(銅仁石榴石濾料)生產廠家(銅仁金剛砂)
碳化硅至少有70種結晶型態。α-碳化硅為常見的一種同質異晶物,在高于2000 °C高溫下形成,具有六角晶系結晶構造(似纖維鋅礦)。β-碳化硅,立方晶系結構,與鉆石相似,則在低于2000 °C生成,結構如頁面附圖所示。雖然在異相觸媒擔體的應用上,因其具有比α型態更高之單位表面積而引人注目,而另一種碳化硅,μ-碳化硅為穩定,且碰撞時有較為悅耳的聲音,但直至今日,這兩種型態尚未有商業上之應用。
因其3.2g/cm3的比重及較高的升華溫度(約2700 °C) [1] ,碳化硅很適合做為軸承或高溫爐之原料物件。在任何已能達到的壓力下,它都不會熔化,且具有相當低的化學活性。由于其高熱導性、高崩潰電場強度及高電流密度,在半導體高功率元件的應用上,不少人試著用它來取代硅[1]。此外,它與微波輻射有很強的耦合作用,并其所有之高升華點,使其可實際應用于加熱金屬。
純碳化硅為無色,而工業生產之棕至黑色系由于含鐵之不純物。晶體上彩虹般的光澤則是因為其表面產生之二氧化硅保護層所致。
物質結構
純碳化硅是無色透明的晶體。工業碳化硅因所含雜質的種類和含量不同,而呈淺黃、綠、藍乃至黑色,透明度隨其純度不同而異。
碳化硅晶體結構分為六方或菱面體的 α-SiC和立方體的β-SiC(稱立方碳化硅)。α-SiC由于其晶體結構中碳和硅原子的堆垛序列不同而構成許多不同變體,已發現70余種。β-SiC于2100℃以上時轉變為α-SiC。碳化硅的工業制法是用優質石英砂和石油焦在電阻爐內煉制。煉得的碳化硅塊,經破碎、酸堿洗、磁選和篩分或水選而制成各種粒度的產品。
制作工藝
由于天然含量甚少,碳化硅主要多為人造。常見的方法是將石英砂與焦炭混合,利用其中的二氧化硅和石油焦,加入食鹽和木屑,置入電爐中,加熱到2000°C左右高溫,經過各種化學工藝流程后得到碳化硅微粉。
碳化硅(SiC)因其很大的硬度而成為一種重要的磨料,但其應用范圍卻超過一般的磨料。例如,它所具有的耐高溫性、導熱性而成為隧道窯或梭式窯的窯具材料之一,它所具有的導電性使其成為一種重要的電加熱元件等。制備SiC制品首先要制備SiC冶煉塊[或稱:SiC顆粒料,因含有C且超硬,因此SiC顆粒料曾被稱為:金剛砂。但要注意:它與天然金剛砂(也稱:石榴子石)的成分不同。在工業生產中,SiC冶煉塊通常以石英、石油焦等為原料,輔助回收料、乏料,經過粉磨等工序調配成為配比合理與粒度合適的爐料(為了調節爐料的透氣性需要加入適量的木屑,制備綠碳化硅時還要添加適量食鹽)經高溫制備而成。高溫制備SiC冶煉塊的熱工設備是專用的碳化硅電爐,其結構由爐底、內面鑲有電極的端墻、可卸式側墻、爐心體(全稱為:電爐中心的通電發熱體,一般用石墨粉或石油焦炭按一定的形狀與尺寸安裝在爐料中心,一般為圓形或矩形。其兩端與電極相連)等組成。該電爐所用的燒成方法俗稱:埋粉燒成。它一通電即為加熱開始,爐心體溫度約2500℃,甚至更高(2600~2700℃),爐料達到1450℃時開始合成SiC(但SiC主要是在≥1800℃時形成),且放出co。然而,≥2600℃時SiC會分解,但分解出的si又會與爐料中的C生成SiC。每組電爐配備一組變壓器,但生產時只對單一電爐供電,以便根據電負荷特性調節電壓來基本上保持恒功率,大功率電爐要加熱約24 h,停電后生成SiC的反應基本結束,再經過一段時間的冷卻就可以拆除側墻,然后逐步取出爐料。

近年來,不同類型的水處理劑和配方不斷涌現,為了限度地發揮水處理劑的作用,了解和研究水處理劑的適用條件和作用機理尤為重要。不少從事水處理技術研究和應用的技術人員對聚磷酸鹽、有機磷酸鹽和羧酸類聚合物等阻垢分散劑作過較為深入的研究,對這些阻垢分散劑的正確使用和新型阻垢分散劑的開發起到了促進作用。對阻垢劑和復合緩蝕阻垢劑在使用中對阻碳酸鈣和磷酸鈣的阻垢分散性能影響因素尚缺少系統的研究,表現出同一種藥劑在不同的循環水系統或在同一個循環水系統不同的時期處理效果相差甚遠。
一般超過3天,污泥就有可能老化了。污泥齡偏低,由此生物活性增強,不利于在二沉池的泥水分離。簡評:泥齡短的高負荷污泥一般沉降速率較快,其中高負荷污泥的沉降性能又比老化污泥好,污泥齡偏低的污泥其沉降速率介于以上二者之間。SV3大于5%,可能是絲狀菌膨脹問題,小于25%,上清液渾濁,夾有細小顆粒,有大量非活性類鞭毛蟲(如側跳蟲、滴蟲),則可能是污泥齡偏低的原因。簡評:SV3沒有排除污泥濃度的因素,污泥是否膨脹可用SVI值作參考,污泥膨脹不一定是絲狀菌過多引起的。
一般而言,降雪量的十分之一相當于等量的降雨量,其確切數字可根據當地的氣象資料確定。地表徑流:地表徑流是指來自場地表面上坡方向的徑,對滲濾液的產生量也有較大的影響。具體數字取決于填埋場地周圍的地勢、覆土材料的種類及滲透性能、場地的植被情況及排水設施的完善程度等。地表灌溉:與地面的種植情況和土壤類型有關。地下水:如果填埋場地的底部在地下水位以下,地下水就可能滲入填埋場內,滲濾液的數量和性質與地下水同垃圾的接觸情況、接觸時間及流動方向有關。