|
|
★灌漿料的 產品用途:
1.灌漿料可進行地鐵、隧道、地下等工程逆打法施工縫的嵌固。
2.建筑物的梁、板、柱、基礎、地坪和道路的補強、搶修和加固。
3.灌漿料可進行地腳螺栓和鋼筋的錨固及結構補強。4.適用于機器底座、地腳螺栓等設備基礎灌漿及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
CGM-1通用型 -----(流動性280以上,強度等級,65兆帕以上)&n橋梁用建筑結構膠現已發展成為系列膠種,按用途不同可分為兩大類:一類是加固補強用結構膠,它質量控制要點:1、在現場施工應做錨栓現場應用條件確定試驗,以充分檢驗承載能力。試驗不僅在低強度混凝土中進行,也要在高強度混凝土中進行。在測試中,其允許荷載、相應間距、邊距構件厚度按生產廠的說明埋置錨栓。試驗采用軸心拉力、剪力及拉剪組合力,從而確定荷載方向對承載力的根據對北京市西直門舊橋、三元立交橋、大北窯橋、朝陽門橋等橋梁的現場考察和取樣分析,可以認為:城市立交橋的混凝土破壞絕對不是單一形式的破壞,可能幾種破壞形式同時起作用,發揮協同作用,造成混凝土耐久性的急劇下降。其中鋼筋銹蝕造成的破壞是主要原因之一。由于梁的設計外形不合理和旌工造成混凝土保護層太薄,碳化失效后發生鋼筋銹蝕膨脹。混凝土開裂后,水進入加劇鋼筋銹蝕和混凝土破壞。如果除冰鹽中的氯離子滲入混凝土,會使鋼筋銹蝕更加嚴重。影響。2、清孔時必須將孔內塵土及浮灰清理干凈。3、螺桿必須用電鉆旋入,不許直接敲入。包括:粘鋼膠,碳纖維膠,植筋錨固膠,灌縫膠,修補膠,封縫膠。另一類是新建橋梁用結構膠,它包括:節段拼裝用結構膠,鋼橋橋面用鋪裝膠。在眾多的膠種中,粘鋼膠是用量最大,應用最為廣泛的一種,因施工條件和施工方式的不同,粘鋼膠又分為涂抹型粘鋼膠和灌注型粘鋼膠。bsp;
CGM-2豆石型 ------ (流動性260以上,適用于建筑加固及單體較大面積灌漿)
CGM-3超細型------(流動性300以上,強度標號C60,有較大流動性需求)
CGM-4高早強型------(有搶工需求的加固,及設備基礎等,一天強度可達C30,3天達50-55兆帕骨料級配是骨料中各粒徑級顆粒的分配情況,它對于混凝土的和易性、強度以及經濟性等都有很大影響,直接決定著水泥用量與混凝土造價。使用級配良好的骨料可以配制出水泥用量較低、各種性能較好的混凝土。控制骨料級配的主要因素是:骨料的表面積和骨料各粒徑級的比例。以上)
CGM-5搶修型
CGM-橋梁支座型----(我國的大體積混凝土水工工程的建設起步較晚,從20世紀50年代開始研究混凝土的溫度裂縫間題。初期修建丹江口工程時,混凝土出現了大量裂縫,后經過停工整頓,在現場進行了歷時數年的調査研究工作,總結了設計、施工方面的經驗,提出了防裂措施,一是嚴格控制基礎允許溫差、新老混凝土上下層溫差和內外溫差;二是嚴格執行新澆混凝土的表面保護;三是提高混凝土的抗裂能力。復工后,沒有出現嚴重危害性的貫穿裂縫或較深層裂縫。表面裂縫也很少出現,為以后防裂技術奠定了基礎。隨后,水工方面防裂技術發展迅速、日趨成熟。跨世紀宏偉工程三峽大壩能夠順利建設的前提之一正是大體積混凝土防裂技術的成熟。主要用于橋梁支座上)
CGM-340A型------(主要用于要求較高的設備基礎二次灌漿上)
★灌漿料的 產品特點:
1.微膨脹性:保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
2.灌漿料的耐久性強:經上百次疲勞實驗,50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
3.灌漿料的高強、早強:1—3天抗壓強度可達30—<在研究鋼筋混凝土植筋錨固構件粘結錨固性能的基礎上,分析比較了植筋錨固鋼筋混凝土受彎構件和鋼筋混凝土整澆受彎構件受低周反復荷載作用的恢復力特性,探討了植筋錨固構件的延性和耗能能力。通過對試驗結果的對比,得到的結論是:植筋錨固構件在周期反復荷載作用下,鋼筋達到屈服后,構件仍具有較好的變形能力,其延性雖不如整體澆注構件,但只要保證施工質量,植入鋼筋深度15d以上就可以達到可靠的錨固效果,并提出為確保植筋的質量,鋼筋的錨固長度可適當增加到20d。SPAN style="FONT-FAMILY: Arial">50Mpa以上。
4. 可冬季施工:允許在-10C氣溫進行室外施工。5. 自流性高:可填充全部空隙,滿足設備二次灌漿的要求。CGM-1通用型灌漿料,流動性280以上,強度等級,65兆帕以上。高強無收縮灌漿料以特種水泥作為結合劑,特選高強度材料為骨料,輔以高流態,微膨脹,防離析等物質配制而成。
灌漿料具有質量可靠,降低成本,縮短工期和使用方便等優點。從根本上改變設備底座受力情況,使之均勻地承受設備的全部荷載,從而滿足各種機械,電器設備(重型設備高精度磨床)的安裝要混凝土結構耐久性的評估和對策,是對已有建筑物可靠性評定的重要組成部分,在對實際結構進行耐久性評定和可靠性鑒定中,不可能對每一位置處鋼筋都進行取樣以評定其銹蝕率,對于一些關鍵部位取樣更是不可能的。因而在不破壞結構安全性的前提下,通過外觀檢測,根據裂縫分布形態、寬度和混凝土結構的原設計參數來判斷鋼筋的銹蝕程度,是混凝土結構銹蝕研究的STORKEL等人【451卻認為摻加粉煤灰的砂漿的耐酸性要不普通硅酸鹽水泥弱,原因是粉煤灰比水泥密度小,在等量取代水泥后,是砂漿中含有更多的漿體,而在混凝土和砂漿中,漿體是最容易被酸性介質侵蝕的物質,所以在粉煤灰等量取代水泥后,砂漿中的漿體體積變大了,所以砂漿的耐酸性能隨之降低中國工程部門經常提到“百年大計,質量第一",這一要求在工程設計和施工中如何具體反映和體現,已日益引起業界人士的迫切關注,隧道與地下以質量變化為評判指標時,pH=l硫酸溶液要比相同pH值的硝酸溶液對砂漿侵蝕要輕得多。從強度結果圖4.9和4—10來看,兩種環境下,砂漿表現相似,隨著侵蝕時間延長,抗壓強度損失逐漸增加,經過3個月的侵蝕后,硫酸對砂漿的侵蝕卻稍微嚴重。圖4.12可以推測早期pH=l硫酸對砂漿的腐蝕程度比硝酸弱,到后期在硫酸溶液中的砂漿的強度損失要高于硝酸溶液中的砂漿。這可能是由于在表面沉積的CaS042H20層在早期能夠減緩酸性溶液對砂漿基體的侵蝕;后期由于內部二水石膏生成體積膨脹,造成外部保護層破裂,有利于侵蝕介質向內部擴散。可見質量損失與強度損失結果是相互矛盾的。工程結構的耐久性問題已經成為當前的一項研究熱點。現有城市軌道交通設計規程中規定了地鐵襯砌結構的設計基準期(使用年限)為100年;對結構耐久性的定義和內涵,《混凝土耐久性設計規范》(GB/T一200x)征求意見稿(待頒布實施)中已寫明:在設計確定的環境——引起混凝土結構材料性能劣化的環境因素(工程周圍大氣溫濕度變化,COs、05、氯鹽、酸堿等有害化學離子施加于結構主體等)的作用和在正常維修、使用條件下,結構構件在規定期限內保持其適用性和安全性的能力,即工程結構的耐久性。。熱點。求,是無墊安裝時代的理想灌漿材料。
★灌漿料的參考用量:
參考用量計算以2.28-2.4噸/立方米為依據,計算實際使用量。
★灌漿料的包裝儲運:
1、灌漿料為50kg袋裝,存放在通風干燥處并防止陽光直射。
2、保質期為3個月,超出保質期應復檢合格后方可使用。
★灌漿料的 預應力孔道注漿狀態對大跨PC箱梁橋受力性能影響研究此,預應力孔道注漿狀態對大跨PC箱梁橋受力性能的研究很有必要。施工工藝:
1.灌漿
(1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
(2).在灌漿過程中不宜振搗,必采用傳統的普通壓漿工藝,孔道長度大于30m或彎曲半徑小于4m的預應力孔道的壓漿質量存在著許多問題,并產生隱患。牛欄江特大橋上部結構箱梁預應力孔道分為縱、橫、豎三個方向,縱、橫向孔道有彎曲,半徑比較大,但孔道比較長,主跨的縱向孔道最長的長度為170m。鑒于牛欄江特大橋的重要性和從結構的耐久性考慮,孔道壓漿設計采用了真空輔助壓漿的工藝。要時可用竹板條等進行拉動導流。
(3).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
2. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
3. 基礎處理
清掃設備基礎表面,不得有當前所知,地鐵隧道襯砌結構鋼筋銹蝕主要原因有三個外部內容:雜散電流、混凝土碳化和氯離子侵蝕。地鐵隧道襯砌結構耐久性不僅受到碳化和氯離子的影響,更因為雜散電流的存在而與地面建筑不同。由于國內外的城市軌道交通直流牽引供電系統中,普遍采用走行軌回流的供電方式,而由此泄露到道床及其周圍土壤介質中的電流便形成雜散電流。碎石、浮漿、灰塵、減少用水量在混凝土中摻入混凝土高效減水劑后,可大大降低混凝土的水灰比,提高混凝土的坍落度和混凝土施工時的可泵性。由于用水量的減少,減小了由于混凝土中水分的蒸發引起的混凝土干燥收縮開裂的可能性,同時也增強了混凝土的密實性和抗滲性。油污和脫模劑等雜物。灌漿前<中央電視塔塔體豎向預應力孔道灌漿,在含3.5%NaCl飽和氫氧化鈣溶液中,利用質量失重法對配制的阻銹劑進行初步的鋼筋防護性能檢驗。利用恒電位/恒電流儀,研究配制的遷移型阻銹劑MCI.A對鋼筋陽極極化電位、鋼筋自然電位、鋼筋腐蝕電流的影響。研究配制的阻銹劑對砂漿試塊及混凝土中鋼片的阻銹作用。對配制的遷移復合型阻銹劑MCbA進行有關應用方面的研究,主要是其對混凝土性能、耐久性方面的影響。預應力管道通過預埋鋼管成孔。漿體水灰比控制在O.41~0.43之間,減水劑比重為0.25%,另外膨脹劑含量為l5%。壓漿工藝則通過普通壓漿泵進行壓漿。SPAN style="FONT-FAMILY: Arial">24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
4. 確定灌漿方式
根據設備機座的實際情況國內外注漿研究現狀在國內,灌漿材料通常選擇純水泥漿為灌漿料;最初的灌漿工藝為壓力灌漿隨著后來塑料波紋管的使用慢慢的轉變為真空輔助壓漿。在現場施盡管試驗中預應力碳纖維片材加固采用與普通粘貼加固相同的縱向破纖維加固量,但取得了更為顯著的加固效果,屈服荷載比普通粘貼加固提高9%,極限荷裁比普通粘貼加固提高33%;相比較而言,波形齒央具錨錨固是一種機械式錨固方式,能夠為碳纖維片材加固構件提供可靠的錨固力,確保其高強性能得到較充分發揮。工過程中,灌漿工藝主要有以下一些流程:最先配置好滿足水灰比在0.4~0.45、泌水率小于或者等于3%且泌水在一定的時間內要被水泥漿重新吸收、稠度在14.18s的灌漿料、凝固前灌漿料要有一定的膨脹作用,便于使灌漿料充滿整個預應力孔道,此外灌漿材料的強度也有一定的要求,即灌漿料的強度不應低于30MPa。,選擇相墻體混凝土溫度曲線與其他大體積混凝土溫度曲線走向相似預應力混凝土連續箱梁在體系轉換施工過程 中,負彎矩孔道壓漿容易存在不飽滿或局部空洞的現象,主要有以下原因:①有些施工人員甚至工程技術人員對負彎矩區預應力的作用不清楚,認為其僅。僅只起聯結作用,張拉與壓漿操作者主要為民工,對負彎矩的作用也不清楚,因而放松了對壓漿的密實要求,施工中常出現民工在壓不過漿的情況下堵塞兩端孔道的現象,對負彎矩預應力的作用不了解是主要原因;②壓漿工藝問題,出漿口沒有止漿開關,在壓漿過程中沒有持壓階段,導致了不密實現象的存在;③預制梁段尺寸不準確,預制段和現澆段的扁波紋管連接成折線狀(有水平方向折溫度,作為一種變形作用,在混凝土結構中引起的裂縫有表面裂縫和買穿裂縫兩種。這兩種裂縫在不同程度混凝土因取材廣泛、價格低廉、抗壓強度高、可澆筑成各種形狀,并目.耐火性好、不易風化、養護費用低,成為當今世界各類建筑結構中使用最廣泛的建筑材料。混凝土最主要的缺點是抗拉能力差,容易開製。近年來,我國基礎建設得到迅猛發展,各地建了大量的混關于溫度應力的理論研究由來已久,在l934年PHMacoJB就以地基為無限剛性的基本假定,用彈性力學理論計算出澆筑在無限剛性基巖上的一片矩形墻的溫度應力。由于其基本假定與實際有出入,故限制了其應用范。于1961年日本的森忠次又研究了類似的問題,開始他亦假定地基為無限剛性的,研究了非線性溫度應力分布的問題。后來他又研究溫度應力與地基剛度成非線性的關系。但由于其計算冗素,且由于無窮級數解取的項數有限而使內力曲線跳躍,故不使使用。美國墾務局考慮基巖非剛性影響,計算中以有效彈性模量''代替混凝土的實際弾性模量,使完筑于非剛性基巖上的結構的溫度應力有所降低,與實際靠近了一步。凝土結構工程,大體積混凝土也越來越廣泛,如各種型式的混凝土大貝、港工建筑物、高層建筑的地下室混凝土底板以及很多大型的基礎承臺都是用大體積混凝土流筑而成的。在建造和使用過程中,有關因出現製要違而影響工程質量甚至導致結構時品的事故報道屢見不鮮。混凝土製重進成了混凝土結構的一種主要病害。大量的工程實踐和理論分析表明,幾乎所有的混凝土構件均是帶製繼工作的,只是有些製維很細,甚至是肉眼看不見微觀製繼(製縫寬度小于0.05mm),一般對結構的使用無大的危害,可允許其存在有些裂整在使用荷載或外界物理、化學因素的作用下,不斷產生和擴展,引起混凝土碳化、保層承落、鋼筋鋸蝕,使混凝土的強度和剛度受到削弱、耐久性降低,嚴重時甚至發生結構倒塌事故,危害結構的正常使用,必現加以控制。上都屬子有害裂縫。由于高層建筑、高聳結構物和大型設各基礎的出現,大體積混凝土也被廣泛采用,大體積混凝土結構的溫度裂縫日益成為建筑工程技術人員面臨的技術難題。線和豎直方向折線二種),波紋管處鋼筋又較密,容易使壓漿堵塞;④波紋管在混凝土澆筑和箱梁安裝過程中發生變形,濕接頭澆注前沒有對變形的波紋管進行有效的調整,使壓漿管道的有效空間減小;⑤在壓漿過程中,水泥漿的配制沒有按設計準確地摻配膨脹劑。,但上升段更陡,即溫度上升更快,也更快的達到溫度峰值;混凝土澆筑后12--60h范圍內,混凝土維持較高溫度(40"C以上,高出環境溫度約10-15"C,會加大混凝土干燥收縮的早期發展,更易導致混凝土的早期開裂。應的灌漿方式,可采用"自重法灌漿"、高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
5. 灌漿料<混凝土后張法孔道壓漿用的水泥漿在自重作用下流動的性能。表示水泥漿可灌性的一個指標。流錐時間:一定體積的水泥漿從一個標準尺寸的流錐中流出的時間。流錐是一錐形漏斗壯容器。體積為1725ml。測定時,通過測量水泥漿從錐形漏斗中流出起至流完為止所需時間作為水泥漿的流錐時間。耐久性是當今世界的大問題,鋼筋混凝土結構依然是工程結構的主體,特別是大型公共基礎設施,鋼筋混凝土是主要材料與結構形式,而基礎設施是國家的經濟命脈,其耐久性問題,足以影響國民經濟與可持續發展。在第二屆國際混凝土耐久性會議上,著名教授Mehta指出:“當今世界混通過對不同膠凝材料:OPC,ASC堿(激發礦渣水泥)、LFA石(灰.粉煤灰水泥)、摻石膏和石灰的高鋁水泥,在pH=3的硝酸和醋酸以及pH-5的醋酸中的性能變化,推斷出水泥的耐酸性取決于水泥水化產物的耐酸性而不是基體孔隙率的結論。胡志遠、陳劍雄等人在用高達85%的鈦渣、礦渣等摻合料制作的混凝土在pH=l的硫酸中具有很好的耐酸性能,在實驗齡期內一直呈現強度增長趨勢。凝土破壞原因,按遞減順序是,鋼筋銹蝕、凍害、物理化學作用”。這就明確的指出了,在混凝土耐久性問題中,鋼筋銹蝕是其中的核心問題。而在引起鋼筋銹蝕的眾多原因之中,來自道路“化冰鹽”和海洋環境中的氯離子,被公認為是導致混凝土結構破壞的主要原因。/SPAN>的攪拌
按灌漿料重量的12%-14%的加水量加水攪拌,水溫以5~40℃為宜。采用機械攪拌時間一般為1~2分鐘;采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
6、養護<抗壓強度提高不明顯是因為加入杜拉纖維的高性能混凝土內部存在一些不同尺度的微裂縫,這些微裂縫對抗壓強度的影響相比較對抗折強度等其它力學性能影響而言要小。理論分析與實驗證明,杜拉纖維的加入對混凝土的抗壓強度有一定提高,但不明顯。且隨我國于1997年開展纖維布補強加固鋼筋混凝土構件的研究工作,其中國家工業建筑診斷與改造工程技術中心最早進行了這項工作,之后,有許多高等院校和科研單位也進行了碳纖維的研究。目前已經進行了20余項研究,發表論文百余篇,應用于實際工程60余項。杜拉纖維摻量的繼續增加,纖維的加入量超過每立方混凝土1.2Kg時,抗壓強度有下降的趨勢。影響碳化的條件涉及環境因素、施工因素和材料因素,本次試驗主要是通過提高環境因素中的C02濃度來使混凝土加速碳化。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt">
(1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
(2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規粘貼碳纖維布加固修補混凝土結構可以廣泛應用于各種結構類型(如建筑物、構筑物、橋梁、隧道、涵洞等)、各種結構形狀(如矩形、圓形、曲面結構)、各種結構部位(如梁、板、柱、節點、拱、殼、墩等)的加固補修,而且不改變結構形狀及不影響結果的外加大截面加固法,是采用同種材料一鋼筋混凝土,來增大原混凝土結構截面面積,達到提高結構承載力的目的。基本要求是:原結構結合面基層應堅實,表面應粗糙、清潔,新澆注的混凝土要求收縮小,粘結性能好。觀,尤其對于大型土木工程結構,采用碳纖維加固法效果比較好。范》(GB50204)的有關規定。
防止鋼筋銹蝕的技術措施有多種,在提高混凝土密實性的基礎上,摻用鋼筋阻銹劑是最通常使用的方法,而且是最簡單、經濟和效果好的技術措施閉。目前,國內應用較多的阻銹劑是亞硝酸鹽類阻銹劑,這類阻銹劑具有毒性和潛在的孔蝕危險,使得它的應用受到很大限制,因此,對于有機復合型阻銹劑的研究顯得尤為重要。本試驗采用動電位掃描、恒電流陽極極化法和失重法綜合評價了自制的有機復合型鋼筋阻銹劑在模擬混凝土孔溶液和砂漿中的阻銹性能。南昌縣早強灌漿料直銷。