|
|
★灌漿料的用途<大體積混凝土結構在施工中容易產生裂縫,這已為眾多的工程實踐所證實,并且越來越引起各方的重視,然而裂縫控制問題仍是困擾工程技術人員的難題之一,人們迫切需要探究裂縫產生的原因這在實際施工中不易做到,測試也很容易出現誤差。我們設想,在實際工程中,直按控制溫度來保一施工的澆筑強度和混凝士的溫升在控制范田之內,以此來實現混凝土的號渡應力小于其抗拉強度。使大體積混凝士施工不出現裂縫,保證大體積混凝的施工質量。并積極尋求能有效防止裂縫出現的措旌和途徑。/SPAN>
(1)、混凝土結構加固和修補:
1.使用高強無收縮灌漿料進行混凝土梁,板,栓等構件的截面加大加固處理。
2.使用CGM高強無收縮灌漿料進行混凝土孔洞修補。
3.后張預應力混凝土結構管道灌漿及封錨。
4、使用CGM高強無收縮灌漿料進行混凝土路面的修補。
(2)、設備基礎二次灌漿 :適用于機器底座,發腳螺栓等;以及鋼結構(鋼軌,鋼架,鋼柱壓漿過程中,進漿口、出漿口都應設有持壓閥門,出漿口流出濃漿后,關閉出漿口閥門,然后持壓23rain,再關閉進漿口閥門,以保證管道內水泥漿保持足夠的壓力。等)與基礎固定連接的二次灌漿。
(3)、地腳螺栓錨固及鋼筋栽埋 :
地鐵,隧道,地下等工程逆打法施工縫的嵌固。
2.建筑物的橋梁,板柱基礎,地坪和道路的補強。
3. 可進行地腳螺栓和螺栓和鋼筋的錮固及結構補強。
BR高強無收縮灌漿料性能特點,初始流動度大于300mm,30min后保留值為260mm,一天強度大于20Mpa,三天強度大于40Mpa,28天強度大于60Mpa.
★灌漿料的八大特點
1、微膨脹性:保證設備與基礎之間緊密接觸, 二次灌漿后無收縮。
2、灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
3、抗離析性能:高強無收縮灌漿料克服了現場使用中因加水量偏多所導致的離析現象。
4、綠色環保:不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不 爆,可按一般貨物運輸。
5、灌漿料的早強、高強:1-3天抗壓強度30-50Mpa以上。
6、可冬季施工:允許在-10℃氣溫下進行室外施工。
7、灌漿料的抗開裂能力:現場使用中因加水量不確定、環境溫度不確定以及養護條件限制等因素裂紋現象。
8、耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡加固粘結材料與基體材料之間存在物理化學性質差異,由于環境溫度的冷熱交替變化,凍融作用以及加固材料的收縮作用而在界面處引起附加拉應力,使得界面產生初始裂縫,一旦受力,裂縫會迅速開展,導致在基體材料界面處產生離,同時由于界面相對平坦不能分散裂縫的擴散路徑和消耗能量,因此微裂縫一旦從這些區域產生,在裂縫尖端處會立即產生應力集中現象,導致裂縫的迅速開展和傳播,使得界面粘結強度會進一步被削弱,最后導致界面處的首先破壞,即破壞總是從薄弱的環節產生。30天后強度明顯提高。
★灌漿料灌漿的準備<精貼二層布時,u型箍發生縱向碳纖維割高碳壞,而x型推發生的是局部縱向碳纖維拉斷碳壞。情況與粘貼一層的梁類似,U型描的割高碳壞是連續的,現象非常明顯。而X型箍則只是在最后即將碳壞時才表現出郵」高的跡象,隨后局部級向碳纖維拉斷。/P>
1、檢查管道出氣孔,有凝義時,選擇有代表性的管道中進行灌漿試驗。
2、灌漿設備、抽真空設備,灌漿泵的壓力:0.4~我國著名裂縫控制專家王鐵夢教授在大量建設實踐和現場實驗研究的基礎上,從力學的角度孔洞一定要清洗干凈,鋼筋必須進行除銹且孔洞一定要干燥后方可進行植筋施工。對混凝士裂縫產生的原因進行了研究,提出了“抗''與“放''的混凝上設計準則。其主要的內前處理。在橋梁結構分析的開始,首先要建立橋梁結構的有限元模型,即為前處理。定義荷載和求解。定義荷載就是在結構模型中定義各個施工階段的荷載,通常是指橫載和活載,除此之外,在施工過程中還有一些考慮不到的臨時荷載等。施加完荷載后根據實際的結構情況給定邊界條件模式。容是:在結構形式的選擇方面,釆取徽動、滑動及設縫措施,提供“放''的條件,在材料的性能方面,釆取提高抗拉強度、抗拉變形能力及初性等提出“抗''的條件。在具體工程中,采取“抗”“放”相結合,以“抗”為主或以“放”為生的措施來防止混凝土裂縫的產生。這種“抗''與“放''設計準則的提出以及將混凝土抗裂能力數字化的方法的應用使混凝土工程裂縫的控制水平大大提高。并在實際工程中取得了較好的效果。0.7Mpa、真空泵的真空壓力:—0.1Mpa.
3、采用鼓鳳或按批準的規定方法進行管道清理,將灌道中的水、冰和雜物清理干凈。
★灌漿料的操作
1、灌漿完成后,應防止漿體從管道流失。
2、灌漿必須從最低處或從最低的鋼絞線開始,以恒定的速度連續進行灌漿,灌滿為止,在波紋管中應適當放慢灌漿速度。
封錨
1、對需要封錨的錨具,在管道測定鋼筋混凝土的腐蝕主要可分為二類方法,物理方法和電化學方法。物理方法有目視觀察、聲發射、電阻探針、嵌入式光纖傳導等方法。國外電化學方法的應用始于五十年代,我國1963年首先將其應用于海港碼頭鋼筋混凝土上部結構腐蝕破壞調查,以后又有多種電化學方法運用于鋼筋的腐蝕檢測。電化學方法主要有半電池電位、電化學噪音、電化學阻抗譜、恒電流脈沖等方法。灌漿完畢后先將錨具周圍沖洗干凈美國科學家摻萘受在植筋前腰清潔鉆孔才行,將桿體旋轉植入孔內,如果沒有膠流出來,那么必須要將桿體撥出來,重新注膠,在沒有固化前不能觸動桿體。試驗規模以及試驗梁體尺寸限制,本次試驗構件數量有限,未能全部考慮影響因素,根據試驗結果可以初步推斷,預應力CFRP片材體外錨固加固混凝土梁的受彎性能和破壞模式與CFRP加固量、預應力張拉値、端銷具與張拉央具的間距分配等有關,還需進一步的試驗研究,找到各自的影響程度關系。系島效減水劑的水泥漿體系一般用Zeta電位表征分散作用的大小,Zeta電位值越大,水泥膠粒間的靜電斥力越火,分散作用越顯著。對于聚羧酸系高效減水劑,其Zeta電位值較低(僅為一10~15mv),但同樣具有優異的分散性。其原凼足水泥顆粒表面吸附聚羧酸系減水劑后,形成層厚厚的吸附層,大分子鏈上的陰離子產牛的陰離子靜電斥力,中性聚氧己烯長側鏈則在外層形成定厚度膜層,形成空間阻礙作用。由于聚援酸減水劑的減水作用機理主要是“空間位阻”作用,所以當在混凝十中加入遷移型阻銹劑后,雖然在一定程度I.降低了水泥顆粒表面的Zeta電位值,但遷移型阻銹劑在初期對水泥水化有一定的阻礙作用,從而有利丁混凝土的流動性。Cook等人通過對大量試驗結果的總結和分析,將化學植筋錨固的破壞形態分為材料破壞和界面破壞兩大類,其中,界面破壞發生在混凝土、植筋膠以及鋼筋三種材料相互接觸的接觸面上;對于材料破壞,可以分為混凝土拉裂破壞和鋼筋拔斷破壞。并對梁端混凝土進行鑿后設置鋼筋網,在錨頭外加裝錨罩,用灌漿材料將錨頭封死,最后在封錨的灌漿材料外涂刷防水涂層。
2、當漿體混凝土結構中的鋼筋銹蝕可分為電化學銹蝕和雜散電流銹蝕。國內外學者對鋼筋混凝土的銹蝕機理做了大量研究,普遍認為:混凝土中鋼筋的銹蝕機理主要為電化學過程。新鮮的混凝土呈堿性,鋼筋表面被氧化,形成致密的保護膜——鈍化膜,使鋼筋處通過對不同膠凝材料:OPC,ASC堿(近年來混凝土拌合網物,特別是預拌混凝土的拌合物,其坍落度值越來越大,粘聚性差,易離析泌水。對此種混凝土少振或不振,不能排除其拌合物中含有的空氣,也即達不到龍密實的程度。但是,現在的主要問題不是少振,而是過振。過振后,將水泥漿、砂漿、粗骨料按從上層至下層分布,其收縮比是3:2:1,這樣混凝土的表面筑的水泥漿在下層砂漿和石予的約束下是極易產生收縮變形裂縫的。合理的振搗,就是要排除混凝土中的空氣,同時使混凝土中的粗骨料能在混凝土的各層中均勻分布。激發礦渣水泥)、LFA石(灰.粉煤灰水泥)、摻石膏和石灰的高鋁水泥,在pH=3的硝酸和醋酸以及pH-5的醋酸中的性能變化,推斷出水泥的耐酸性取決于水泥水化產物的耐酸銹蝕鋼筋的延性性能下降是公認的研究結論,延性性能降低的原因是鋼筋截面的減少和銹坑引起的局部應力集中:塑性變形主要集中在截面銹損最大、發生斷裂的部位,當同一試件上最大銹損截面處已經屈服時其它銹蝕損失小的截面的應變還很小。國外的研究還表明,除了外界腐蝕性氣體和液體環境引起脆性外,晶格的點、線、面、體缺陷間的相互作用也可以使材料的固有韌度大大降低。性而不是基體孔隙率的結論。胡志遠、陳劍雄等人在用高達85%的鈦渣、礦渣等摻合料制作的混凝土在pH=l的硫酸中具有很好的耐酸性能,在實驗齡期內一直呈現強度增長趨勢。于鈍化狀態,即使在有水分和氧氣等利于銹蝕產生的條件下鋼筋也不會發生銹蝕。硬化時,所有開孔,灌漿管和氣孔均要緊密封口以防止水有有害物的侵入;
注:1、灌漿層厚度δ≤150mm時,選用CGM-1(CGM-380)或CGM-2(CGM-340);灌漿層厚30mm<δ<150mm時,選用CGM-2(CGM-340)或CGM-3(CGM-300) ;灌漿層厚度δ≥30mm時,選用CGM-3(CGM-300)或CGM-4(CGM-300)型;路面快速搶修,選用<溫度,作為一種變形作用,在混凝土結構中引起的裂縫有表面裂縫和買穿裂縫兩種。這兩種裂縫在不同程度上都屬子有害裂縫。由于高層建筑、高聳結構物和大型設各基礎的出現,大體積混凝土也被廣泛采用,大體積混凝土結構的溫度裂縫日益成為建筑工程技術人員面臨的技術難題。/SPAN>CGM-4(CGM-270)型。
2、抗壓強度按:《GB177-85水泥膠砂強度試驗方法》;膨脹率按:《GB119-88混凝土外加劑應用技術規范》。
★灌漿料的包裝貯運
1.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2.保質期為6個月,超出保質期應復檢合格后方可使用拌合優良的混凝土能提高混凝土施鋼筋混凝土結構的構造設計是混凝土抗裂的重要因素,長墻水平鋼筋小直徑、高密度并置于主筋外側,底板加鋪細鋼筋網均能增加混凝土抗裂能力,大大減少混凝土表面裂縫。混凝土原材料的質量和混凝土坍落度控制是混凝土生產控制關鍵,粗細骨料含泥量會直接影響混凝土的抗拉強度,泵送混凝土的坍落度應控制在12±2cm以下。混凝土振搗和養護控制是混凝土施工過程控制的關鍵,塑料薄膜保濕加草袋保溫的綜合養護措施簡.便有效。這種“防”的原則,實際是采取防護措施來大幅減小溫差,以達到防止溫度裂縫產生的目的。工性能,保證混凝土澆筑質量,使用混凝土在澆筑過程中泌水率減小、集料離析、沉降現象減輕,便于得到均勻密實的混凝土,均勻密實混凝土的強度也能明顯改善,抗壓、抗拉、粘結強度均可提高30%,抗沖擊強度也有較大提高,有利于增強混凝土的抗裂碳化收縮大氣中的二氧化碳與水泥的水物發生化學反應引起的收縮變形稱為碳化收縮。由于各種水化物的堿度不同,結晶水及水分子數量不等,碳化收縮量也大不相同。碳化作用中存在適中的濕度,約50%左右才發生,碳化速度隨二氧化碳濃度的增加而加快,碳化收縮與干燥收縮共同作用導致表面開裂和面層碳化。干濕交替作用使得在C02存在的空氣中混凝土收縮更加顯著。碳化收縮在特定環境中的特久強度,干縮(失水收縮)混凝土在干燥和水濕的環境中產生干縮和膨脹現象,最大的是收縮是發生在第一次干燥之后,收縮和膨脹變形是植筋設計一般原則:設計目的是保證鋼筋延性破壞,而避免混凝土(受壓或受拉狀態)脆性破壞或劈裂破壞。部分可逆的。混凝土結構干縮是非常復雜的變形過程,影響混凝土收縮的因素很多,諸如水泥標號、水泥用量、標準莫西度、骨料種類、水灰比、水泥用量、混凝土震動搗實狀況、試件截面暴露條件、結構養護方法、配筋數量、經歷時間等。性混凝土墻體在早期由于水泥水化熱的釋放會引起溫度的上升與體積膨脹嚴格按使用說明書使用膠料,計量要準確,按照比例用磅秤稱,配膠由專人進行,攪拌要均勻,結構膠配料時切忌有水滴入盛膠容器內,容器應清潔。配好膠后要在規定的時間內用完。施工中要保證結構膠灌注飽滿。,在水泥水化熱釋放速度變緩以后又會由于墻體表面散熱作用而溫度下降體積收縮。混凝土墻體的膨脹與收縮將受到周混凝土終凝后,在其表面畜存一定探度的水,采取蓄水養護是一種較好的方法。我國許多工程曾經采用,并取得良好的敬果。水的導熱系數為o58w/(mK),具有-定的隔熱保溫作用。這樣可以延緩混凝土內部水化熟的降溫速率,縮小混凝土中心和表面的溫度差値,從而可防止混凝十的裂縫開展。圍構件如底板或基礎的約束,不能自由發生從而在混凝土墻體中引起受力變形,當受力變形大于混凝土的極限變形時,墻體就將出現裂縫。。 。
★灌漿料的配制:
1、CGM灌漿料拌和時,加水量應按隨貨提供的產品合格證上的推薦用水量加入,攪拌均勻即可使用。對于地腳螺栓錨固和栽埋鋼筋,用水量可根據工程實際情況適當減少。拌和用水應采用飲用水,使其它水源時,應符合現行《混凝土拌和用水標準》(JGJ63)的規定。
2、 CGM灌漿料的拌和可采用機械攪拌或人工攪拌。 推薦采用機械攪拌方式,攪拌時間一般 為1-2分鐘(嚴禁用手電鉆式攪拌器)。采用人工攪拌時,應先加入2/3的用水量拌和2分鐘,其后加 入剩余水量攪拌至均勻.
3、現場使用時,嚴禁在CGM灌漿料中摻入任何外加劑、外摻料。
4、 每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
5、 冬季施工時,CGM灌漿料及拌和水應符合現行《鋼筋混凝土工程施工及驗收規范》(GB50204)的有關規定。
6、 攪拌地點應盡量靠近灌漿料施超厚墻體混凝土結構在降溫階段,由于降溫和水分蒸發等原因產生收縮,再加上存在外約束不能自由變形而產生溫度應力的。因此,控制水泥水化熱引起的溫升,即減小了降溫溫差,這對降低溫度應力、防止產生溫度裂縫能起釜底抽薪的作用。為控制超厚墻體混凝土結構因水泥水化熱而產生的溫升,可以釆取下列措施:選用中低熱的水泥品種--混凝土升溫的熱源是水泥水化熱,在施工中應選用水化熱較低的水泥以及盡量降低單位水泥用量。為此,目前,國內外對錨栓承載力的設計計算,主要是建立在錨栓單向拉拔試驗的受力機理,關于其在動力作用、地震作用及開裂混凝土上的適用性研究很少。施工超厚墻體溫凝土結構多用325#、425#礦渣硅酸鹽水泥。如425#礦渣確酸鹽水泥經驗公式主要是通過網大量實測數據分析各種因素影響提出的,精度方面勢必會受到測量誤差的影響,為進一步提高預測精度,人們在不斷地進行經驗公式的修正和完善工作,采龍取的有效措施可歸納為三點:以非線性擴散理論為基礎,推測干燥收縮的筑發展過程;使用可測得較精確值的短期(28天或一年)干燥收縮實測值預測干燥收縮最終值:對收縮估算模式中的收縮半衰期進行修正,提高預測精度和對高性能混凝土的適用性。其3天的水化熱為180KJ/Kg,而普通425#硅酸鹽水泥則為250KJ/Kg,水化熱量減少28%。利用混凝土的后期強度--試驗數據證明,每立方米的混凝土水混用量,每增減1okg,水混水化熱將使混凝土溫度相應升降1℃。因此,為控制混凝土溫升,降低溫度應力,減少產生溫度裂縫的可能性,根據結構實際承受荷載情況,可釆用f45、f6o或fgo替代f28作為混凝土設計強度,這樣可使每立方米混凝土水泥用量減少40~70kg/m3,混凝土的水化熱溫升相應減少4~7℃。由于超厚墻體混凝土結構承受的計算荷載,要在較長時間之后才施加其上,以只要能保證混凝土的強度在28d之后繼續增長,且在預計的時間(45、6o或9od)能達到或超過設計強度即可。利用混凝土后期強度,要專門進行混凝土配合比設計,并通過試驗證明28d之后混凝土強度能繼續增長。工地點,距離不宜過長。
參考用量:
&nbs“九五”期間國家計委、科技部設立了“重橋梁粘鋼加固設計應按下列原則進行承載力驗算:結構的計算應根據加固后結構的實際應力情況和實際的邊界條件進行;結構的計算截面積,保留的構件采用基于檢測結果的計算截面積,新增構件采用實際有效截面積,并考慮結構在加固后的實際受力程度、加固部分的應變滯后特點以及加固部分與原結構協同工作的程度;加固后使結構恒載增大時,應對被加固的相關結構及基礎進行驗算。點工程混凝土安全性的研究”國家重點科技攻關項目,針對影響混凝土耐久性的主要因素設立了三個大課題和十個專題開展了研究。1996年清華大學、建設部建筑科學研究院、交通部科學研究院公路科研所、冶金部建研院等單位完成《混凝土結構耐久性檢測指南》編寫工作。1998年經建設部批準,全國建筑物鑒定加固標準委員會下達的《混凝土結構耐久性評估標準》也正在編制中。同時由清華大學陳肇元院士主持編制的《混凝土結構耐久性設計與施工指南》于2004年正式出版。p; 參考用量計算以2.28~2.4噸/立方米為依據,計算實際使用量。
根據工程檢測經驗,鋼筋銹蝕在離混凝土邊界最近,即保護層最薄的地方銹蝕量最大,這與一般邊部鋼筋銹蝕的特征是一致的。角部鋼筋兩側距高混凝土邊界都較近,在一般情況下,角部鋼筋銹蝕程度比邊中要重,銹蝕損失率也要大。新余超早強灌漿料銷售。