伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用 。
在伺服驅動器速度閉環中,電機轉子實時速度測量精度對于改善速度環的轉速控制動靜態特性至關重要。為尋求測量精度與系統成本的平衡,一般采用增量式光電編碼器作為測速傳感器,與其對應的常用測速方法為M/T測速法。M/T測速法雖然具有一定的測量精度和較寬的測量范圍,但這種方法有其固有的缺陷,主要包括:1)測速周期內必須檢測到至少一個完整的碼盤脈沖,限制了最低可測轉速;2)用于測速的2個控制系統定時器開關難以嚴格保持同步,在速度變化較大的測量場合中無法保證測速精度。因此應用該測速法的傳統速度環設計方案難以提高伺服驅動器速度跟隨與控制性能
以下部分產品型號舉例:
BCH1001O21A1C
BCH1001O21F1C
BCH1001O31A1C
BCH1001O31F1C
BCH1002O01A1C
BCH1002O01F1C
BCH1002O11A1C
BCH1002O11F1C
BCH1002O21A1C
BCH1002O21F1C
BCH1002O31A1C
BCH1002O31F1C
BCH1301M01A1C
BCH1301M01F1C
BCH1301M11A1C
BCH1301M11F1C
BCH1301M21A1C
BCH1301M21F1C
BCH1301M31A1C
BCH1301M31F1C
BCH1301N01A1C
BCH1301N01F1C
BCH1301N11A1C
BCH1301N11F1C
BCH1301N21A1C
BCH1301N21F1C
BCH1301N31A1C
BCH1301N31F1C
BCH1302M01A1C
BCH1302M01F1C
BCH1302M11A1C
BCH1302M11F1C
BCH1302M21A1C
BCH1302M21F1C
BCH1302M31A1C
BCH1302M31F1C
BCH1302N01A1C
BCH1302N01F1C
BCH1302N11A1C
BCH1302N11F1C
BCH1302N21A1C
BCH1302N21F1C
BCH1302N31A1C
BCH1302N31F1C
BCH1303M01A1C
BCH1303M01F1C
BCH1303M11A1C
BCH1303M11F1C
BCH1303M21A1C
BCH1303M21F1C
BCH1303M31A1C
BCH1303M31F1C
BCH1303N01A1C
BCH1303N01F1C
BCH1303N11A1C
BCH1303N11F1C
BCH1303N21A1C
BCH1303N21F1C
BCH1303N31A1C
BCH1303N31F1C
BCH1304N01A1C
BCH1304N01F1C
BCH1304N11A1C
BCH1304N11F1C
BCH1304N21A1C
BCH1304N21F1C
BCH1304N31A1C
BCH1304N31F1C
BCH1801N01A1C
BCH1801N01F1C
BCH1801N11A1C
BCH1801N11F1C
BCH1801N21A1C
BCH1801N21F1C
BCH1801N31A1C
BCH1801N31F1C
BCH1802N01A1C
BCH1802N01F1C
BCH1802N11A1C
BCH1802N11F1C
BCH1802N21A1C
BCH1802N21A1C
BCH1802N31A1C
BCH1802N31F1C
BCH1802M02A1C
BCH1802M02F1C
BCH1802M12A1C
BCH1802M12F1C
BCH1802M22A1C
BCH1802M22F1C
BCH1802M32A1C
BCH1802M32F1C
BCH1803N02A1C
BCH1803N02F1C
BCH1803N12A1C
BCH1803N12F1C
BCH1803N22A1C
BCH1803N22F1C
BCH1803N32A1C
BCH1803N32F1C
BCH1803M02A1C
BCH1803M02F1C
BCH1803M12A1C
BCH1803M12F1C
BCH1803M22A1C