|
|
★灌漿料的 產品用途:
1.灌漿料可進行地鐵、隧道、地下等工程逆打法施工縫的嵌固。
2.建筑物的梁、板、柱、基礎、地坪和道路的補強、搶修和加固。
3.灌漿料可進行地腳螺栓和鋼筋的錨固及結構補強。4.適用于機器底座、地腳螺栓等設備基礎灌漿及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
CGM-1通用型 -----(流動性280以上,強度等級,65兆帕以上)
CGM-2豆石型 ------ (流動性260以上,適用于建筑加固及單體較大面積灌漿)
CGM-3超細型------(流動性300以上,強度標號C60,有較大流動性需求)
CGM-4高早強型------(有搶工需求的加固,及設備基礎等,一天強度可達C30,3天達50-55兆帕隨著科技與工業的飛速發展,惡劣環境對混凝土結構的腐蝕日趨嚴重。鋼筋混凝土結構物在服役過程中,不同程度地遭受周圍環境的物理、化學、生物作用,混凝土內的某些成分發生反應、溶解、膨脹,引起混凝土腐蝕破壞,導致混凝土結構的耐久性、強度及其與鋼筋的粘結強度等基本性能的降低,對國民經濟造成極大的損失。以上)
CGM-5搶修型<自生收縮。自生收縮是混凝土在硬化過程中,水泥與水發生水化反應,這種收縮與外界濕度無關,且可以是正的(即收縮,如普通硅酸鹽水泥混凝土),也可以是負的(即膨脹,如礦渣水泥混凝土與粉煤灰水泥混凝土)。碳化在上述收縮試驗的同時,進行系列預拌混凝土立方體抗壓強度、劈裂抗拉強度、彈性模量等基礎網試驗,并結合工程實踐調查以認識現代預拌混凝土的基本力學性能、基本收縮性能的新變化。進行系列預拌龍混凝土塑性抗裂性能試驗平(板試驗),認清并正確分析、評價混凝土塑性抗裂筑性能。收縮。大氣中的二氧化碳與水泥的水化物發生化學反應引起的收縮變形。碳化收縮只有在濕度50%左右才能發生,且隨二氧化碳的濃度的增加而加快。炭化收縮一般不做計算。混凝土收縮裂縫的特點是大部分屬表面裂縫,裂縫寬度較細,且縱橫交錯,成龜裂狀,形狀沒有任何規律。研究表明,影響混凝土收縮裂縫的主要因素有水泥品種、骨料品種、水灰比、外摻劑、養護方法、外界環境和振搗方式等。對于溫度和收縮引起的裂縫,增配構造鋼筋可明顯提高混凝土的抗裂性,尤其是薄壁結構。構造上配筋宜優先采用小直徑鋼筋。/P>
CGM-橋梁支座型----(主要用于橋梁支座上)
CGM-340A型------<由于灰漿梁的配箍率影響較高抗硫酸鹽水泥和普通硅酸鹽水泥含(13%礦物摻合料)表現出相似的耐酸性能。早期由于水泥的繼續水化使得基體的密沉降收縮是指新拌混凝土由于不斷沉實而產生的體積減小。沉降收縮形成的原因是由于混凝土組成材料在澆搗后發生不均勻沉降,其中粗骨料下沉,水泥凈漿上浮,出現分層離析現象。當混凝士澆搗后,骨料顆料懸浮在一定稠度的水泥漿體中,漿體的密度較低,大概只有骨料密度的一半,所以骨料在漿體中有下沉趨勢,而漿體中的水泥顆粒又遠重于水,使得新拌混凝土中的水向上轉移,即發生沉降與泌水現象,形成豎向體積縮小的沉落,這種沉落直到混凝土硬化時才停止。水泥凈漿浮至混凝土表面則產生外分層,水泥漿浮至粗集料下方,產生內分層,而水份上升到混凝土表面則形成一層表面泌水。實度增加,從而使混凝土的強度增加。此時,混凝土因酸侵蝕也會造成強度的衰退,只是前者對混凝土的影響效應要比后者更明顯,所以在宏觀上就表現為強度的增長。但是經過增長期后,兩種混凝土因酸侵蝕而造成的強度下降速率相似,但是OPC混凝土在達到最高強度后,下降速率更快,經過1y的侵蝕后,強度下降率都超過25%。大,因為粘貼碳纖維布加固梁的抗彎承載力得到提高后,可能使梁由受彎破壞轉變為受剪破壞,如配箍率低,抗剪承載力較低,從而導致從剪切裂縫處開始的粘結破壞。為避免梁發生從剪切裂縫處開始的粘結破壞,以充分發揮碳纖維的抗拉強度,提高加固效果,對加固區采取適當的附加錨固措施是十分必要的。本次試驗中采用了CFRPU型箍作為附加錨固措施,所有采取了附加錨固措施的加固梁均未發生從剪切裂縫處開始的粘結破壞;加固梁中只有B13梁沒采取U型箍附加錨固,但該梁并未發生從剪切裂縫處開始 進行了1層和2層CFRP布加固銹蝕柱的抗腐蝕性能。研究結果表明,增加CFRP的層數對加固柱的抗腐蝕性能的影響不很顯著。CFRP和GFRP加固柱的抗腐蝕性能,不同層數的FRP加固試件的最終 銹蝕率。當FRP由1層增加到2層時,FRP加固柱的抗腐蝕性得到了進一步的提高,繼續增加FRP的層數,加固柱的抗腐蝕性得不到更進一步的改善。的粘結破壞,這主要是由于試驗梁設計時在剪彎段布置了較多的箍筋,且碳纖維布片端一直延伸到了支座。泌水,在錨具附近可能有未被灰漿填滿的部分或錨具背后附近的空氣被隔絕排不出來形成氣囊,所以必須安裝扣碗。實踐證明采用木楔或事先用灰漿蘑菇頭的封閉方法都是不科學和不安全的。/SPAN>(主要用于要求較高的設備基礎二次灌漿上)
★灌漿料的 產品特點:
1.微膨脹性:保證設備與基礎之間緊密接觸,二分別摻入不同摻量的鉬酸鈉、丙烯基硫脲、二乙烯三胺、1.4.丁炔二醇、吡啶到模擬液(3%氯化鈉溶液)中,將鋼筋放入模擬液中浸蝕一周,測量試樣的失重。是混凝土模擬液中隨單獨摻入鉬酸鈉量的增加,其緩蝕效率變化情況。根據得到的實驗數據可以算出阻銹劑的緩蝕效率,添加0.19/L鉬酸鈉時的緩蝕效率為99.749。次灌漿后無收縮。
2.灌漿料的耐久性強:經上百次疲勞實驗,50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
3.灌漿料的高強、早強:1—3天抗壓強度可達30—現行防剝萬的錨固描施u形箍,它的作用機理在一定程度上可以抑制裂縫的開展情況,延緩早期:剝離的發生,但是破纖維的單向受力特性注定U形箍不能從根本上解決剝離破壞的發生,一旦製縫的發展使局部到u離產生,U形推無法阻止局部,剝離繼續發展,而且隨著製縫的結構可靠性是指結構在規定時間內和條件下完成預定功能的能力。結構的預定功能主要包括結構的安全性、適用性、耐久性。由于各種原因,結構在使用過程中的實際功能會逐漸降低。有時需要對結構的實際功能進行鑒定。結構可靠性鑒定就是通過調查、檢測、分析和對結構的安全性、適用性和耐久性進行判斷、評定的過程。發展與荷載的增大,u形箍自身也可能在更無法起到抗剝高的作用。50Mpa以上。4. 可冬季施工:允一種后錨連接技術,它是在已有混凝土結構或構件上,以適當的孔徑和深度鉆孔,然后用植筋粘結劑(或稱植筋膠)將帶肋鋼筋或長螺桿植入原混凝土中,可達到與原結構構件可靠連接的目的。許在-10C氣溫進行室外施工。
5. 自流性高:可填充全部空隙,滿足設備二次灌漿的要求。CGM-1通用型灌漿料,流動性280以上,強度等級,65兆帕以上。高強無收縮灌漿料以特梁開裂后碳纖維布對裂縫的開展有較大的抑制作用,加固后梁的裂縫發展較為緩慢,裂縫間距較小,數量較多,寬度較小。同時,由于界面處的剪應力作用,即使在純彎段,也觀察到不少斜裂縫,表明碳纖維布對裂縫起到了較大的約束作用,這種約束作用隨著碳纖維布層數的增多而增強。種水泥作為結合劑,特選高強度材料為骨料,輔以高流態,微膨脹,防離析等物質配制而成。
灌漿料具有質量可靠,降低成本,縮短工期和使用方便等優點。從根本上改變設備底座受力情況,使之均勻地承受設備的全部荷載CFRP因其物理性能優越、環境敏感性小、粘合性好等特點而備受研究人員關注,它不僅質量輕、強度高,且耐腐蝕、在潮濕環境中和經受凍融循環過程中強度不會有明顯的降低。目前,CFRP已成為新型加固材料的主流。CFRP承受變形能力較強、韌性好,普通中等彈性模量碳纖維的極限應變達0.015"--'0.020,對于碳纖維系列產品,在達到極限應變以前一直處于線彈性狀態,沒有明顯的屈服點。碳纖維布易成型,能夠粘貼在曲面或不規則的結構表面上,考慮到其方向性,設計者可以進行裁剪,使其在特定方向上達到預期的設計強度。碳纖維片材的主要力學性能指標應滿足《碳纖維片材加固混凝土結構技術規程》。,從而滿足各種機械,電器設備(重型設備高精度磨床)的安裝要求,是無墊安裝時代的理想灌漿材料。
★灌漿料的參考用量:<金屬波紋管在上述情況下發生銹蝕,銹蝕機理同普通鋼筋,與預應力筋不同,金屬波紋管的銹蝕伴有體積膨脹,使混凝土表面出現裂縫,因其靠近混凝土保護層,會l起混凝土保護層開裂,進而引起或加劇預應力筋的銹蝕。/P>
參考用量計算以2.28-2.4噸/立方米為依據,計算實際使用量。
★灌漿料的包裝儲運橋臺新建輔助擋土墻加固法。當橋臺前墻水平土壓力過大,導致橋臺傾斜,臺背之后新建一重力式擋土墻來平衡。墩臺拓寬方法。利用舊橋基礎,在墩臺蓋梁挑出懸臂,達到加寬臺帽、蓋梁,以便安裝需加寬的上部構造。要求加寬墩合的臺身、基礎須穩定、良好,結構計算合格。否則,應增現澆加寬部分的墩臺及基礎。:
1、灌漿料為50kg袋裝,存放在通風干燥處并防止陽光直射。
2、保質期為3個月,超出保質期應復檢合格后方可使用。
★灌漿料的 施工工藝:
1鋼筋自身的不均勻性。化學組成不同、晶格結構上的差異、鈍化膜的不連續、受力程度不同或由于表面被鹽類等污染程度不同等造成的不一致性,將會導致電位差的存在,從而形成腐蝕電池。.灌漿
(1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。<當實際所需錨固力較小時(如用螺栓固定器具、管線、支架等),可按螺栓長度確定鉆孔深度,但深度不宜小于5d。/SPAN>
(2).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
(3)< 粘鋼加固后結構的耐久性:粘鋼所用結構膠的主要成份是環氧樹脂,而環氧樹脂的特性是受紫外線照射時,容易發生分解,產生老化。但在粘鋼結構鐵路懸臂梁后張法預應力孔道灌漿的作用:防止預應力鋼材銹蝕;使預應力鋼材與混凝土有效的粘結,實現整體應力效果,增強梁體的承載據相關研究結果[50~52]表明,應用不同巖性的粗集料會對混凝土材料在酸性環境中的耐久性造成危害。本節研究在pH≥2的硝酸環境下,砂巖性以及細度對砂漿耐酸性能的影響。采用高抗硫酸鹽水泥(SRPC),三種巖性的砂分別為花崗巖砂、片麻巖砂和石灰石砂。砂漿水灰比為0.4,灰砂比為1:2.5,成型24h后脫模,標準養護被粘構件表面因在制造、加工、運輸、安裝和使用等過程中,表面不同程度地吸附了一層污染物,如機抽、脫模劑、粉塵、抽脂和銹t班等。這些污染物往往表面能很低,內聚強度又小,膠粘劑不易完全浸相,粘結性能明顯下降。為保證加國效果,應將被粘構件表面接拭干凈。檢査表面清潔度的簡便方法是觀察水滴在表面上浸潤和擴散的情況。干凈的表面水滴應迅速而完全展開,并在表面形成一連續不碳製的水願,這種方法通常稱為水脫法。條件(20"C,lm≥90%)養護至14d進行侵蝕試驗。為了減少影響因素,選擇pH.2的硝酸溶液為侵蝕溶液,同時常攪動溶液以減小溶液的濃度梯度,且每2d調節溶液pH值至初始值2,每周更換溶液,減弱因可溶性鈣鹽浸出使溶液成分改變而對侵蝕過程的影響。能力;減輕錨固體系的負荷。據相關資料介紹,懸灌橋梁孔道堵塞是困擾施工的難題,還有從地震垮塌的后張法預應力橋梁構件上截取若干斷面解剖分析:發現后張法預應力鋼筋銹蝕、斷面銳減、斷絲及內力損失嚴重等致命的質量問題,充實孔道的作用是保護預應力鋼筋及提高整體結構的承載力。中,環氧樹脂處于鋼板和混凝土之間,不會受到紫外線輻射的影響,所以粘鋼結構的耐久性是比較好的。防止粘鋼結構鋼板銹蝕及化學腐蝕是提高其耐久性的關鍵,行之有效的辦法是在鋼板上粘鋼絲網后,粉刷一定厚度的普通砂漿溫度變化和混凝土收縮均會在建筑結構中產生水平方向和豎直方向的內力和變形,但在結構設計時一般沒有對此進行計算和分析。主要是基于以下考慮:一方面,建筑結構的溫度場分布和混凝土收縮參數很難確定;另一方面,混凝土既有塑性變形,又有徐變和應力松弛,溫度和收縮產生的實際內力要遠小于按彈性結構計算的值;此外,由于施工時是逐層建造,許多變形和內力在施工過程中已經逐步重新分布乃至消失。或防腐砂漿。SPAN style="FONT-FAMILY: Arial">.在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
2. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
3. 基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
4. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,可采用"自重法灌漿"、高位漏斗法灌漿"或"壓力法灌漿"進水泥砼裂縫成因很多,但可以主要歸納為以下幾點:水泥砼材料及配合比。配合比設計不當直接影響水泥砼的抗拉強度,是造成水泥砼開裂不可忽視的原因。配合比不當指水泥用量過大,水灰比大,含砂率不適當,骨料種類不佳,選用外加劑不當等,這幾個因素是互相關聯的。有關試驗資料顯示:用水量不變時,水泥用量每增加10%,混凝土收縮增加5%;9年期銹蝕鋼筋混凝土板的破壞主要由原有分布鋼筋銹蝕裂縫引起,對比分析表明,隨著齡期的增大,相繼出現的鋼筋銹蝕、縱筋銹蝕裂縫、分布鋼筋銹蝕裂縫、保護層脫落等影響著板的破壞形式,特別是分布鋼筋銹蝕裂縫出現后,分布鋼筋銹蝕裂縫起主導作用。水泥用量不變時,用水量每增加10%,混凝土強度降低20%,混凝土與鋼筋的粘結力降低10%。養護條件。養護是使水泥砼正常硬化的重要手段。養護條件對裂縫的出現有著關鍵的影響。在標準養護條件下,水泥砼硬化正常,不會開裂,但只適用于試塊或是工廠的預制件生產,現場施工中不可能擁有這種條件。但是必須注意到,現場水泥砼養護越接近標準條件,水泥砼開裂可能性就越小。行灌漿,以確保漿料能充分填充各個角落。
5. <對于情況比較復雜的計算,則大多數采用數值解法,常用的有一維和二維差分法和有限単元法,這些方法的采用,自上世紀六十年代以來,國內外對現澆框架節點的抗震性能相繼開展了大量的研究,逐步探索了如何改善節點強度和延性,并且對節點抗震能力的計算方法也提出了許多設計建議。研究成果很多,也基本成熟現在,人們的研究主要集中在異形框架節點,和鋼管混凝土新型(裝配式或整體式)節點的研究。可以較精確地計算溫度場和溫度應力。實際上無在植筋技術中,構件節點主要依靠植筋膠與鋼筋的粘結傳力,我國工程界目前正在編寫關于混凝土結構加固施工驗收規范,植筋施工質量好壞直接影響加固效果,應當引起足夠的重視。論是理論解法還是數值解法都是建立在不同程度假定的基礎上,不可能完全客觀地反映大體積混凝土裂繼發展的規律,在裂縫控制方面,更多的研究集中在工程實踐中如何采取有效措施達到防止裂縫的日的。/SPAN>灌漿由于鋼筋銹蝕造成的巨大經濟損失,人們越來越認識到鋼筋防腐技術的重要意義,并將它作為提高鋼筋混凝土結構物耐久性的主攻方向之一。對于普通鋼筋和預應力鋼筋,其防腐原理是相同的,但由于預應力混凝土結構體系具有其自身的特點,因此預應力鋼筋的防腐方法稍為復雜,且隨預應力體系的不同所采用的防腐方法也有所不同。料的攪拌
按灌漿料重量的12%-14%的加水量加水攪拌,水溫以5~40℃為宜。采用機械攪拌時間一般為1~2分鐘;采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
6、養護
(前蘇聯科學家B.H.維諾格拉多夫在《集料對混凝土性能的影響》一書中列舉了一些混凝土材料工作者的研究成果。H.K郝赫林研究了耐酸集料波特蘭水泥重混凝土和輕混凝土對0.2mol/L的HCl溶液的穩定性。認為,用多孔集料代替致密集料可以提高混凝土的耐酸性。實驗結果表明重混凝土經過30天,0.2mol/L的HCI溶液侵蝕后的剩余抗壓強度為原始強度的4叫5%;而輕混凝土的剩余強度為60~70%。1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
(2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
當橋梁結構物出現強度不夠、通行能力降低(如載荷等級提高、原結構損壞、橋寬不夠、通航)、泄洪等要求時,則需對橋梁結構進行加固增強等技術改造。橋梁加固改造即重要又需綜合應用相關專業技術。即將專業的結構計算理論與實際已有問題的橋梁結構綜合在一起,需要考慮的因素將涉及到諸多的方面。可以這樣說,無論是加固改造方案的制定與結構計算,還是加固改造的操作實施,困難程度遠遠超過新建同等橋梁。橋梁主要構件的加固增強的目標為提高其承載能力,延續其使用功能,保證其安全性和正常通行能力。南昌灣里超早強灌漿料生產廠家。