|
|
★灌漿料的安全性
采用無毒無揮發配方,對環境和人體友好,但應避免與皮膚長期接觸,使用時應佩帶必要防護并保持環境通風,皮膚沾染應及時清洗,如有誤食口服,請立刻飲水催吐并延醫治療。
★灌漿料的適用范圍與參數
CGM-3
超細加固型 超細骨料,適用于灌漿層厚度5mm<δ<30mm的設備基礎及鋼結構柱腳板二次灌漿。混凝土梁柱加固角鋼與混凝土之間縫隙灌漿。
CGM-2
豆石加固型 <根據對北京市西直門舊橋、三元立交橋、大北窯橋、朝陽門橋等橋梁的現場考察和取樣分析,可以認為:城市立交橋的混凝土破壞絕對不是單一形式的破壞,可能幾種破壞形式同時起作用,發揮協同作用,造成混凝土耐久性的急劇下降。其中鋼筋銹蝕造成的破壞是主要原因之一。由于梁的設計外形不合理和旌工造成混凝土保護層太薄,碳化失效后發生鋼筋銹蝕膨脹。混凝土開裂后,水進入加劇鋼筋銹蝕和混凝土破壞。如果除冰鹽中的氯離子滲入混凝土,會使鋼筋銹蝕更加嚴重。/SPAN>含5~10mm大骨料,適用于灌漿層厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強當前所知,地鐵隧道襯砌結構鋼筋銹蝕主要原因有三個外部內容:雜散電流、混凝土碳化和氯離子侵蝕。地鐵隧道襯砌結構耐久性不僅受到碳化和氯離子的影響,更因為雜散電流的存在而與地面建筑不同。由于國內外的城市軌道交通直流牽引供電系統中,普遍采用走行軌回流的供電方式,而由此泄露到道床及其周圍土壤介質中的電流便形成雜散電流。加固(修補厚度≥60mm)。
CG地鐵隧道與地上建筑因其所處的位置不同,所以隧鋼筋與混凝土之間的粘結是保證鋼筋與混凝土兩種不同材料共同工作的前提,鋼筋與混凝土間的粘結作用主要由三部分組成,即:鋼筋表面的化學膠著力、鋼筋與混凝土界面上的摩擦力以及鋼筋表面橫肋與混凝土間的機械咬合力組成。銹蝕發生后,鋼筋表面的銹蝕產物質地疏松,對鋼筋與混凝土的界面產生潤滑作用,加之鋼筋表面橫肋銹損,都會使鋼筋與混凝土之間的握裹力下降,鋼筋與混凝土粘結性能退化。道的工作環境、施工工藝、使用功能等有所不同,其耐久性研究具有特殊意義。地鐵在運營過程中,產生的雜散電流對隧道襯砌結構耐久性產生影響。地鐵雜散電流是由采用直流供電牽引方式的地鐵工程因受到污染、滲漏、和高應力破壞等原因而泄露到道床及其周圍土壤中的進行了預應力碳纖維布加固的鋼筋混凝土T形試件的疲勞性能研究。作者共制作了3根試件,l鋼筋腐蝕過程是溶液中各種去極化劑在腐蝕電池的明極上被還原的過程。對于金屬腐蝕來說,氫離子和氧分子的明極還原反應是最常見的兩個明極去極化過程,相應發生的金屬腐性分別稱為析氫腐蝕和吸氧腐蝕。當混凝土構件處于強酸或較強酸性環境介質中時,則可能發生析氫腐蝕,此時,由于鋼筋處在混凝土包圍之中,腐蝕反應產生的氫氣很難及時排出,氫氣在鋼筋銹蝕時進入銅筋之中,扱易產生“氫脆''現象。當混凝土構件處于含有溶解氧的中性或堿性環境介質中,由于氫離子濃度很低,則發生吸氧腐蝕。根不加固作為對比試件,根粘貼非預應力碳纖維布加固,l根應用預應力碳纖維布進行加固,4層碳纖維布被張拉至30%抗拉強度的初始應力后粘貼于試件上。試驗疲勞荷載上限為65kN,下限為5kN,加載頻率為2Hz。作者發現預應力碳纖維布加固在提高構件疲勞性能方面較非預應力碳纖維布加固更為有效。電流,是在規定線路之外流動的電流的總稱。M-4
超早強加固型隨著科技的進步和居民生活水平的提高,工程中對建筑物安全性和抗震性的一些板還出現了板截面寬度的損失。這些破壞主要集中在板的底部及棱角,其中幾乎所有試驗用板兩邊角區鋼筋保護層都已脹裂脫落,分析其主要原因是:板的保護層厚度較小,鋼筋間距較大,導致板底面出現順筋破壞,未出現整層剝落,兩邊角區處鋼筋易受來自于板底面和側面的雙向氯離子侵蝕作用,造成氯離子大量在鋼筋周圍富集,以及角區鋼筋更易得到銹蝕所需要的氧和水分,鋼筋銹蝕速度加快。另外角l又:混凝土受周圍混凝土的約束較小,鋼筋較小的銹蝕就會使保護層開裂。要求越來越高,對建筑用鋼的強度及其綜合性能要求的也越來越高,采用高強自生收縮是混凝土在混凝土拌制及成型養護過程中,由于水泥顆粒不斷水化,毛細管及各孔隙游離水逐漸與水泥礦物質水化,轉化為凝膠及結晶形成水泥石,面積略有收縮。即水泥與水化合作用后生成物面積小于原物料面積,也稱硬化收縮,這種收縮與外界濕度無關。自生收縮可能是正的變形,也可能是負的變形膨(脹),普通硅酸鹽水泥的自生收縮是正的,即縮小變形,而礦渣水泥的混凝土的自身收縮是負的,即為膨脹變形。摻用煤粉灰的自生收縮也是膨脹變形,盡管自身收縮的變形不大,但是對混凝土的抗裂性是有益的。目前補.償收縮混凝土的研究和發展逐漸認識到,如果有意識地控制和利用混凝土的自生面積膨脹變形,有可能大大改善某些混凝土的抗裂性。但對于普通水泥混凝土,由于大部分屬于收縮的自生面積變形,數量級較小,一般在計算中可忽略不計。鋼筋可以有效提高建筑結構的抗震性能,增強結構的安全度,具有顯著的經濟和社會效益。 2小時強度達到15Mpa<主體結構的施工速度不能強求過快,樓層砼澆筑完后的必要養護(一般不宜≤24小時)必須獲得保證。主體結構階段的樓層施工速度宜控制在6-7天一層為宜,以確保樓面砼獲得最起碼的養護時間。科學合理安排樓層施工作業計劃,在樓層砼澆筑完畢的24小時以前,可限于做測量、定位、彈線等準備工作后張法預應力鋼筋混凝土箱梁施工的主要環節及質量控制要點:(張拉與錨固)張拉前的準備工作。千斤頂與壓力表應配套,經主管部門授權的法定計量單位校驗,并確定張拉力與壓力表的關系曲線,找出各束預應力筋初應力、控制應力等階段性應力,相應拉力的壓力表的數值。安裝好相應的錨環、夾片之類的錨具。明確各束張拉的順序。明確各項工作,如讀數、記錄等負責人員,設置安全標志,確定混凝土強度已達到設計強度的75%以上或達到設計規定的強度。張拉操作。張拉分一端張拉和兩端張拉,若是兩端張拉,要求兩端操作人員密切配合,盡量保持一致,注意各階段施加應力值和伸長值的觀察,丈量、記錄清楚。,最多只允許暗柱鋼筋焊接工作,不允許吊卸大宗標材料,避免沖擊振動。24小時以后,可先分批安排吊運少量小批量的暗柱和剪力墻鋼筋進行綁扎活動,做到輕卸、輕放,以控制和減小沖擊振動力。第3天方可開始吊卸鋼管等大宗材料以及從事樓層墻板和樓面的模板正常支模施工。在模板安裝時,吊運(或傳遞)上來的材料應做到盡量分散就位,混凝土壓應變均還處于較低水平,三位置處應變片數據符合較好,試驗中均未發現板頂面混凝土出現開裂、鼓起、破碎現象。對板頂面混凝土壓應變進行了探討,認為雖然海洋環境下混凝土同時遭受氯離子和碳化影響,但其材料性能似乎并沒有太大的變化,可以忽略混凝土材料力學性能的變化。本次試驗和它相比,極限狀態下的應變水平較低,說明隨著板銹損程度的增大,板頂面混凝土壓應變減小,特別是在板底面分布鋼筋銹蝕開裂后,板主要是沿著銹蝕裂縫處破壞,混凝土上表面達不到極限壓應變。不得過多地集中堆放,以減少樓面荷重和振動。對計劃中的臨時大開間面積材料吊卸堆放區域部位(一般約4自生收縮:混凝土硬化過程是由于化學作用引起的收縮,是化學結合水與水泥的化合結果,這種收縮與外界濕度變化無關。自生收縮可能是正的變形,也可能是負的膨脹。骨料與膠合料之間也產生不均勻的收縮變形,這些都發生在混凝土終凝之前,即塑性階段,故稱為塑性收縮。其收縮的量級很大。可達1%左右,所以在澆筑大體積混凝土后4一15小時里,在表面特別在養護不當的部位出現龜裂,裂縫無規則,既寬(卜2毫米)又密(間距5一lO厘米),屬表面裂縫。由于沉縮的作用,這些裂縫往往沿鋼筋分布。水灰比過大,水泥用量大,外加劑保水性差,粗骨料少,用水量大,振搗不良,氣溫高,表面失水大等都能導致塑性收縮表面開裂。0平方米左右)的模板支撐架在搭設前,就預先考慮采用加密立桿(立桿的縱、橫向間距均不宜大于800毫米)和擱柵“9年期銹蝕鋼筋混凝土板試驗——5年期、7年期和9年期試驗結果對比——預測剩余承載力”為主線,對一批在海洋環境下已服役9年的銹蝕鋼筋混凝土板進行承載力試驗,以及結合它們的破損、老化特征(裂縫寬度、長度、位置、分布形念等)探索已破損老化構件的承載能力、變形性能以及破壞特征,并在此基礎上結合構件的原設計參數建立它們之問相應的量化關系及計算模型。將試驗結果與同環境下的5年期、7年期銹蝕鋼筋混凝土板的各項指標進行對比分析,研究銹蝕板結構性能隨時間變化的退化規律,為在役構件可靠性鑒定以及耐久性評估提供依據。增加模板支撐架剛度的加強將A、B組份按20:1比例混合攪拌至完全均勻,用鋼制刮刀或其他工具上膠。措施,以增強剛度,減少變形來加強該區域的抗沖擊振動荷載,并應在該區域的新筑砼表面上鋪設舊木模加以保護和擴散應力,進一步防止裂縫的發生。/SPAN>,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,止水堵漏快速修補。
CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼筋,建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參考。
2.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
3.灌漿料的保質期為<用抽氣機對管道抽空看是否達到0.08MP,主要就是為了檢查管道是否密實,特別是端頭部位是否漏氣,抽空結束后建議先打開閥門聽聽是否有抽氣的聲音,這樣可以檢查另一端是否堵塞。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">6
個月,超出保質期應復檢合格后方可使用 。<混凝土耐久性指混凝土在使用環境、自然環境及材料內部因素的物理或化學作用下,保持混凝土膠層一混凝土界面粘結失效導致的剝離破壞。多數試件的破壞形式屬于這種類型。加載到后期裂縫開始分叉并出現雜散電流對地鐵襯砌結構中的鋼筋以及其他金屬管道等會產生電化學腐蝕。這種電化學腐蝕不僅能縮短襯砌結構的使用壽命,而且會降低地鐵襯砌結構的強度和耐久性,甚至釀成災難性事故。雜散電流、碳化和氯離子侵蝕等三個外部作用成為地鐵隧道襯砌結構中鋼筋銹蝕的主要原因。這三種作用各自發生的機理、引起鋼筋銹蝕量及速度均有相關的研究,但關于他們三者綜合作用對耐久性影響的成果極少。微小的脆響聲,繼續加載后在某一處膠層界面可以觀察到有裂縫開展摻50%磷渣粉混凝土的耐酸性要比摻30%效果好。同樣為50%摻量的粉煤灰、礦渣粉和磷渣粉的混凝土,從侵蝕1年后的強度損失結果來看,摻粉煤灰混凝土在酸性環境下的穩定性能最好,而摻入礦渣粉的混凝土相對較差。但是在前4個月內,磷渣由于基以Aidoo、Heffem蛆等人為代表,認為加固構件疲勞性能還受混凝土與碳纖維之間的粘結性能影響,當膠層發生剝離、粘結失效時,受力鋼筋應力幅會重新增大,從而降低疲勞壽命提高幅度。在HeffemJ等人進行的試驗研究中,盡管受力鋼筋的應力幅由于粘貼碳纖維加固而減小,疲勞壽命并未產生對應比例增長。有學者認為這是因為雖然最初鋼筋應力幅因為加固而減小,但隨著剝離的發生鋼筋應力幅又回到了未加固構件的水平。對于Barnes與Mays,Shaha、Ⅳy與Beitelm鋤聲稱采用FRP加固后,受力鋼筋應力幅與構件疲勞壽命均產生顯著改變,有學者提出試驗結果中給出的FRP的應變水平只有鋼筋應變水平的50%~80%,兩者之間存在明顯的不連續性,表明膠層發生了明顯的滑移或者剝離。礎豎向不均勻沉降或水平方向位移,使結構產生附加應力,超出混凝土結構的抗拉能力,導致結構開裂。基礎不均勻沉降的主要原因有:分期建造的基礎。在原有橋梁基礎附近新建橋梁時,如分期修建的高速公路左右半幅橋梁,新建橋梁荷載或基礎處理時引起地基土重新固結,均可能對原有橋梁基礎造成較大沉降。地基凍脹。在低于零度的條件下含水率較高的地基土因冰凍膨脹;一旦溫度回升,凍土融化,地基下沉。因此地基的冰凍或融化均可造成不均勻沉降。橋梁基礎置于滑坡體、溶洞或活動斷層等不良地質時,可能造成不均勻沉。粉對混凝土耐酸性的改善作用最好。具體原因分析見第六章。磷渣粉的性能決定了其摻量不能過大,因為磷渣會導致混凝土凝結時間延長,而使混凝土早期強度低,降低施工模板使用效率,延長工期,所以大摻量磷渣粉混凝土應該謹慎使用。,逐漸向兩邊開展,有的裂縫甚至越過了在靠近加載點處的U型箍。加載到一定程度后出現一聲較大的響聲,裂縫有較大的發展。當達到80%極限荷載后繼續加載,彎曲裂縫有兩端窄中間寬的發展趨勢,保護層混凝土自受拉縱筋處起從主縫分又出從屬裂縫。最后,伴隨一聲爆響,碳纖維布被拉混凝土內部溫度的不均勻性和混凝土材料本身的非均勻性及抗裂能力是混凝土出現溫度裂縫的兩個原因。混凝土內部的溫度是水化熱的絕熱溫度、澆注溫度和結構物的散熱溫降等各種溫度的疊加,而溫度應力則是由溫差所引起的溫度變形造成的:溫差愈大,溫度應力也愈大。混凝土的線膨脹系數a一般為lOxlO'6/℃,混凝土的極限拉伸值EP一般在50。lOOxlO擊之間,此時容許混凝土的內外溫差值應為5.IO'C。當實際溫差超過理論給出的“允許溫差”時,混凝土就可能開裂,這就是大面積混凝土表面需要及時覆蓋保濕保溫養護的原因。工程實踐中,多數工程的溫差一般在20—25"C之間尚未開裂,主要因為結構物不可能受到絕對約束,混凝士也不可能不產生徐變和塑性變形,所以我國提出的大面積混凝土的允許溫差控制標準為:一般不超過25℃。斷,碳纖維布和混凝土粘結在一起,甚至將整個混凝土保護層都扯下來,露出受力鋼筋。B13梁、B14梁和BII2梁的破壞屬于這種形式。自身工作能力的性能。影響鋼筋混凝土耐久性的主要因素有鋼筋銹蝕、混凝土碳化、堿骨料反應、混凝土的抗凍性及抗滲性等。SPAN style="FONT-FAMILY: 宋體; LETTER-SPACING: 0pt; COLOR: #ff0000; FONT-SIZE: 16pt; background-size: initial; background-origin: initial; background-clip: initial">★灌漿料的特點 對于第二階段,即鋼筋銹脹導致混凝土保護層的開製作用,國內外學者就此進行了大量的研究。所采取的方法主要是理論分析、試驗研究和工程調査,所提出的模型技其建立的途徑可分為理論模型和經驗模型。
(1)對比裸鋼筋和鍍鋅鋼筋在混凝土中的腐蝕電流密度,可看出,在前10個周期中,裸鋼筋的腐蝕電流密度遠遠小于鍍鋅鋼筋,說明鍍鋅鋼筋在高堿性的混凝土中比處于鈍態的裸鑲筋活性要高很多。從第20周期開始,裸鋼麓的腐蝕電流密度遠大子鍍鋅鋼筋的腐蝕電流密度,說明此時裸鋼筋的腐蝕速度遠大于鍍鋅鋼筋,鍍鋅鋼筋在含氯離子的混凝土中比裸鋼筋有較高的耐蝕性。鍍鋅鋼筋達到1“Atin-2(對應予鍍鋅層每年15pro厚度的損失)的腐蝕速度大約要20個周期(140天),麗鍍鋅層的厚度在450pm"-'8801un,此后鍍鋅層會在30年左右(按450pro的厚度計算)的時間內耗盡,使鋼筋黎露于含氯離子的環境中。加防止雜散電流腐蝕及其危害的措施是目前國內外相關人士一直致力研究的課題。如何將雜散電流腐蝕降到最低程度,首先應有一個嚴格、完善的防護雜散電流的設計,并按照規范和標準進行施工,以期防忠于未然,這當然是必不可少的先期防護措施,即采用“源控制"的辦法仍是腐蝕治理的根本措施。但是,地鐵建設過程中的許多先期防護措施是會隨著時間的推移而逐漸失效。新建的雜散電流前蘇聯科學家B.H.維諾格拉多夫在《集料對混凝土性能的影響》一書中列舉了一些混凝土材料工作者的研究成果。H.K郝赫林研究了耐酸集料波特蘭水泥重混凝土和輕混凝土對0.2mol/L的HCl溶液的穩定性。認為,用多孔集料代替致密集料可以提高混凝土的耐酸性。實驗結果表明重混凝土經過30天,0.2mol/L的HCI溶液侵蝕后的剩余抗壓強度為原始強度的4叫5%;而輕混凝土的剩余強度為60~70%。甚小的地鐵系統,在運營一段時間后,由于不可避免的污染、潮濕、漏水及受低周載荷而破壞等因素,均會使原來良好的軌地絕緣性能降低,隧道襯砌結構抗腐蝕能力下降。因此,雜散電流防護措施的提出勢在必行。由于地鐵雜散電流腐蝕而造成的危害是巨大的,因而不論在地鐵的設計、建設和運營期間,雜散電流的防護措施都有著十分重要的意義。速鍍鋅層的腐蝕。 高韌性 可化解由動設備傳遞來的可能通過拉拔試驗分別對埋置于混凝土中的銹蝕鋼絞線和埋置于波紋管內水泥漿中的銹蝕鋼絞線的粘結性能進行了研究。試驗結果表明在實驗室條件下能實現,但用于實際工程往往不可行,且操作復雜,可獲得的預應力很小;對端部有墩、臺等支撐結構的析梁來說,依靠外部框架張拉難以安裝張拉機具,獲得的預應力也很小,端部若不果用有效錨固措施,易發生剝高破壞。:鋼絞線在漿體中的粘結強度小于在混凝土中的粘結強度;鋼絞線的粘結強度與混凝土或漿體的抗拉強度成正比關系;在輕度銹蝕的情況下,隨著銹蝕率的增加,鋼絞線的粘結強度有所提高。使水泥基灌漿層爆裂的動荷載。(2) 灌漿料Aurellado!對6根被加固鋼筋混凝土“T’’形截面梁在靜載及周期荷載作用下的抗剪性能進行了研究。除了對比試驗梁,所有其它梁用鋼絲網水泥片將腹板包住,鋼絲網片用兩種方法粘貼:即將抗剪錨固件穿過腹板和翼緣來固定網片。在3.6%~36%理論極限荷載和4.8%"-48%理論極限荷載的作用下對梁進行低周反復荷載試驗。試驗結果表明,由于腹板及梁底外包加固層及剪切連接件的共同作用使梁的強度和剛度都得到了很大提高,用穿過腹板和穿過翼緣的軟鋼剪切連接件錨固籠狀的鋼絲網片,比傳統的加固方法工作性能好。前者在承受大小為48%理論極限靜力荷載循環200000次后,其抗彎剛度的退化可忽略不計。的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替、振動受壓的惡劣物理工況下長期使用無塑性變形。
(4) 無收縮 確保灌漿層最終成型后與承載面完全接觸,保證設備安裝的高精確度。
(5) 灌漿料的高強早強 具有優于水泥基材料的抗壓、粘結等力學性能,更高的早期強度。
砂漿的抗折強度不僅受到本身性能的影響,同時受到試塊表面狀態影響,也因儀器原因而造成了抗折強度波動性大,沒有明顯規律,此處只以砂漿的抗壓強度作為砂漿耐酸性能的表征參數。表5-4為三種水泥砂漿在pH=1的強酸性環境下抗壓強度測試值,由于砂漿表面漿體脫落而造成測試面不平整,造成不可避免的誤差,所以在試驗過程中需要采取措施盡量減小強度值的離散性。江西臨川C60灌漿料直銷。