|
|
||||||||||||||||||||||||||||
★灌漿料的特點
抗油滲 在機油中浸泡30<鋼板粘結面須進行除銹處理。如鋼板未生銹或輕微銹蝕,可用噴砂、砂布或平砂輪打磨,直至出現金屬光澤。打磨粗糙度越大越好,打磨紋路應與鋼板受力方向垂直。/SPAN>天后其強度提高10%以上,成型體、密實、抗滲、適應機座油污環保。
微膨脹 澆注體長期使用無收縮,保證設備與基礎緊密接觸,基礎與基礎之間無收縮,并適當的膨脹壓應力確保設備長期安全運行。
耐侯性好-40℃~600℃長期安全使用
早強高強 澆后1-3天強度高達30Mpa以上,縮短工期。
的耐久性200萬次疲勞試驗,50次凍融環境試驗強度無明顯變化。
低堿耐蝕 嚴格控制原材料堿含量,適用于堿-集料反應有抑制要求的工程。
自流態 現場只需加水攪拌,直接灌入設備基礎,砂漿自流,施工免振,確保無振動、長距離的灌漿施工。
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
無論對于傳統的外加鋼筋網砂漿面層加固砌體結構,還是對于復合砂漿鋼筋網條帶加固,加固層與原結構構件之間的共同作用是保證加固效果的前提。在鋼筋網水泥砂漿面層加固中,通過設置穿墻拉結鋼筋(磚混結構加固與修復圖集:03SG611)來傳遞加固層與原構件的剪力;《砌體結構設計規范》,對于截面長短邊相差較大的構件如墻體等,應采用穿通墻體的拉結鋼筋作為箍筋。2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
<表面裂縫:大體積混凝土在澆筑的初期,由于水混水化熱大量產生,從而使混凝土的溫度急劇上升。但由于溫凝土表面散熱條件較好,熱量可以向大氣散發,其溫度上升實際比較少而混凝士內部由于散熱條件較差,熱量不易向外散發,所以其溫度上升較多。溫凝土內部溫度高、表面溫度低,則形成溫度梯度,使溫凝土內部產生壓應力,而表面產生拉應力,當拉應_超過混凝土的概限抗拉強度時,混凝二表面就會產生裂縫。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt"> 2.粘貼鋼板的截面積與鋼筋截面積的比值越大,受拉鋼筋的應力降低幅度也越大,對梁的剛度的提高也越明顯,通常隨粘貼鋼板厚度的增加,破壞由鋼板的屈服轉變為鋼板的剝離。鋼板的粘結長度對梁的破壞方式的影響較明顯,如果粘結長度過長,加固梁的破壞方式會由彎曲延性破壞變為剪切或剪彎脆性破壞。4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術Butler等人通過在惰性氣體中加熱的方法測定了大量商品碳纖維在25~2500℃范圍內的軸向膨脹系數。碳纖維的長度變化用接觸在碳纖維末端的線性未分變量測定,最高的纖維溫度波(動范圍為士15℃)用顯微光學高溫計測定。碳纖維的楊氏模量越高,膨脹百分率越小。隨著纖維模量的增加,膨脹系數.溫度曲線與單晶石墨在口。方向上的關系曲線接近。Wasan介紹了一種測定碳纖維軸向熱膨脹系數的彎曲方法。在該方法中,把配筋的目的主要是通過限制混凝土拉應力以將混凝土收縮裂縫的寬度控制在可容許的程度以內。配置鋼筋是控制混凝土裂縫的重要手段之一,在混凝土構件中配置鋼筋雖然不能阻止裂縫的出現,但可以把無筋混凝土構件中的單個寬裂縫分散成為許多條的細微裂縫,使得混凝土拉應力減小,從而混凝土中含有大量的孔隙、粗孔及毛細孔,這些隙中存在水份,水份的活 質量保證措施:賦予質檢工程師一票否決的權利,以充分發揮質檢工程師和技術人員對質量的監控作用,遵循質量控制程序,應用相應的設備和方法檢測試驗,對原材料到工程施工過程都進行嚴格的質量檢查。實行質量與經濟利益掛鉤的獎罰制度。在施工過程中,根據工序的重要性、復雜性等因素制定一套獎罰制度,實行重獎、重罰,利用經濟手段以保證工程質量。動影響到混凝土的一系列性質,特別是產生濕照干縮”的性質對裂縫的控制有重要作用。混凝土的水份有化學結合水、物理一化學結合水和物理力學結合水三種類型,其中8o%的水份要素發,只有2o%的水份是水、硬化所必須的多余水份的蒸發會引起混凝土的收因此電化學檢測方法得到了很大的重視和發展,目前在實對于意外事故(如火災)可能導致FRP加固失效的情況,該指南要求使結構不致產生嚴重倒塌碳壞(這一點在ACI-440指南中也是如此考慮),并提出FRP加固為結構抽助筋(secondaryreinforcement)的概念。驗室已成功地用于檢測混凝土試樣中鋼筋的銹蝕狀況和瞬時銹蝕速度,并已開始嘗試用于現場檢測。電化學方法是混凝土中鋼筋銹蝕無損檢測方法的發展方向。目前鋼筋銹蝕檢測的電化學方法主要有自然電位法、交流阻抗譜法和線性極化法等,此外恒電量法、電化噪聲法、混凝土電阻法、諧波法等也在發展中,但用于現場檢測尚不多。縮,這種收縮變形不受約束條件限制,若有約束即可能引起混凝土的開製,并隨著齡期的增長而發展。混凝土水化作用時產生體積變形,稱為自生體積變形''。該變形取決于凝膠材料的性質,多數為收縮變形。使裂縫的寬度變小,裂縫條數變多,裂縫間距變小,以有利于抗裂。一根碳纖維的兩端水平地夾持,然后在纖維中通電加熱。加熱中由于碳纖維發生線性膨脹而出現彎曲下垂。已經計算出的碳纖維樣品長度變化72pm時,彎曲撓度(纖維中點下垂高度)為206mm,這個值可以用測高儀精確地測定。已經測得Beslon基聚丙烯腈碳纖維的結構膠固化后,采用儀器按照檢驗數量進行現場植筋的拉拔試驗,以檢驗植筋的性能,并按規范要求進行驗收。軸向膨脹系數為l×10與/K,標準方差為8x10一。而較易石墨化的瀝青基碳纖維的熱膨脹系數值非常低。平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
2.4.3.2 將拌和好的GM型灌漿料一次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止承裁力的提高只能在一定范圍內有效,加固面積超過一定限度后,加國效果就不甚明顯了。而且如果加固面積過大,還可能發生超筋碳壞,導致碳纖維布的強度得不到充分發揮。在設計過程中,應控制碳纖維的粘貼面積。不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n天的高度讀數(mm);Ho:試件的初始讀數(mm);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值,精確到10-2。
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(植筋技術需要嚴格控制植筋的施工質量。相同條件的鋼筋拉拔試驗,不同的植筋深度,不同類型的植筋鋼筋都會產生不同的構件破壞形態及其抗力。無機質類植筋粘結劑,考慮植筋鋼筋的直徑、植筋孔徑的影響,確定植筋鋼筋合理的植筋深度。通過植筋拉拔試驗,結合有限元數值模擬分析研究,確定常用C20混凝土在不同植筋鋼筋直徑和不同植筋孔徑下的合理植筋深度。進而研究在合理植筋深度下,如何使加固后的結構構件在一定的拉拔力作用下產生塑性破壞,即當植筋深度達到或超過該植筋深度時,植筋鋼筋屈服的同時,周圍混凝土也發生局部破壞,且具有明顯的預兆。JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料。 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥40mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6<影響混凝土中鋼筋銹蝕的因素很多,理論上說凡是影響鋼筋電化工程實踐和理論分析證明,對于地下結構混凝土裂縫問題,采用“跳倉法”原理,采取了對設計、材料、混凝土施工工藝養護條件等各方面進行綜合優化管理后,即使是普通的材料,常規的施工工藝,通過精心施工,精心養護,是完全可以有效地控制裂縫。通過本工程實踐,我們還體會到,大型混凝土結構工程質量控制中,經常會涉及到設計、施工、材料等多方面的綜合技術,而往往由于設計人員不熟悉旖工,施工人員不熟悉設計,.混凝土供應商不清楚設計要求及施工條件,容易造成控制上的脫節,因此需要各單位之間密切配合,做好溝通、協調,對工程質量進行綜合技術控制。學腐蝕反應過程的因素都會對鋼筋的銹蝕產生影響,這些因素主要有:Cl濃度的影響。進入混凝土中Cl只有一部分溶解于孔隙液中成為游離的Cl,另一部分則被吸附固化。鋼筋表面孔隙液中游離Cl濃度越高,則對鈍化膜的破壞作用越大,鋼筋的活性越大,銹蝕速度也越大。由于鋼筋的活性還受pH值(OH濃度)的影響,當OH濃度高時,鈍化膜穩定性好,破壞鈍化膜所需的Cl濃度越高。因此,用Cl/OH來表征鋼筋的活性比用Cl濃度更合理。Cl/OH具有臨界值,Cl/OH小于這個臨界值時銹蝕不會發生。SPAN style="FONT-FAMILY: 宋體">、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達<試驗二中撓度值大于試驗一中的撓度值,而試驗三中撓度值較前兩次試驗都小,下降幅度較大。試驗二中撓度值大于試驗一主要是由于隨著齡期的增加,鋼筋截面面積的減小、構件截面尺寸的削弱、材料力學性能的劣化、混凝土與鋼筋之間的粘結力退化,導致了構件截面剛度的退化。而隨著板齡期的進一步增加,第三次試驗中板底面由于分布鋼筋銹蝕出現了大量的橫向裂縫,這些裂縫的出現導致了板截面高度較大的損失,板剛度退化嚴重,而板的厚度又相對較小,所以扳在被擱到兩端支座上還未進行試驗前,板會由于這些截面剛度的減小,而發生了一部分變形,這部分變形測量困難,導致了第三次試驗中板撓度小于前兩次試驗的值。/SPAN>C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌在完全卸載情況下,采用Q235鋼或Q345鋼作為外粘鋼板時不影響抗彎承載力的極限值。在不卸載粘鋼加固時,特別是結構承載力不 足而進行加固時,截面應力水平一般都較高,此時,用Q345鋼板容易成為超筋梁,而Q235鋼板較Q345鋼板的抗彎承載力極限值大。在卸載至構件原受力鋼筋應力195MPa 時,用Q235鋼板作為外粘鋼板,不影響抗彎承載力的極限值;而當l>95MPa時,抗彎承載力極限值開始降低,下降幅度隨 l的增大而減少。故在部分卸載或不卸載情況下,采用Q235鋼板進行加固,可以較Q345鋼板更多地提高正截面抗彎承載能力。漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。<報道碳纖維增強塑料預施應力的預應力混凝土已鋼筋腐蝕已成為水工鋼筋混凝土建筑物耐久性的主要問題之一。目前,應用最廣泛、最有效的鋼筋阻銹劑仍然是亞硝酸鹽類阻銹劑,國內市場的鋼筋阻銹劑產品基本都含有亞硝酸鹽,由于其存在用量不足時會加速腐蝕,并對環境和人體健康有負面影響,傳統的亞硝酸鹽類鋼筋阻銹劑產品面臨挑戰。因此,對非亞硝酸鹽系列的復合型鋼筋阻銹劑進行研究具有重要的意義。用于實際工程。試驗結果表明,這種梁的靜態破壞形態幾乎與預應力鋼筋混凝土的靜態破壞形態相同。不僅靜定結構,而且超靜定結構也可以用這種方式施加預應力。/P>
★灌漿料的施工
1.基礎處理<1991年,美國混凝土協會(ACI)成立了ACl440委員會,負責開展纖維增強復合材料(Fl沖)加固混凝土結構與砌體結構的研究,ACl423委員會負責開展纖維增強復合材料的研究。ACl440委員會于1996年推出了指導外貼FRP系統加固混凝土結構施工和設計的技術標準。1993年,ACI在加拿大主辦了第一屆國際FRP專題會議,此后每兩年舉辦一次FRP混凝土國際學術研討會,成為國際上一個具有很強吸引力的專題會議。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌土木結構工程中,大體積混凝土與普通混凝土也是不同的。大體積混凝土具有結構厚大、澆筑量大,施工條件復雜,且多為現澆超靜定結構,施工技術和質量要求較高等特點。因此,除了必須具有足夠的強度、剛度、穩定性以外,還應滿足結構的整體性與耐久性要求。漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式<混凝土碳化反應產生的CaC03和其他固態產物堵塞在混凝土的孔隙中,使已碳化的混凝土的密實度與強度提高。另一方面,碳化能使混凝土的脆性變大,但總體上講,碳化對混凝土的力學性能及構件受力性能的負面影響不大,混凝土碳化的最大危害是會引起鋼筋銹蝕。碳化是一般大氣環境下混凝土的鋼筋脫鈍銹蝕的前提條件,從而影響混凝土結構的耐久性。/P>
根據設備機座的實際情況,選擇相應的灌漿方式,復合涂層鋼筋(只劃透環氧涂層到鍍鋅層)在劃痕位置下呈現淺灰白色,沒有金屬光澤,表明劃瘦下豹鍍鋅層已被腐蝕產物覆蓋。劃痕周圍的環氧涂層沒有發生剝離,說明氯離子最然可促進鋅的腐蝕溶解,但并沒有造成劃痕附近環氧涂層的剝落。劃傷熬復合涂層鋼筋(劃透環氧涂層和鍍鋅層宜到鋼筋基體)在劃痕位置下呈現出灰白色,沒有金屬光澤,有一些很小的紅色斑點,表明劃痕下的鋼筋熬體發生了一定程度的腐蝕。但是劃痕周圍的環氧涂層也沒有發生測離。由于CGM具有很好的流動性能,一般情況下,用"自重法尤其是在高盈利狀態下,如果不適時采取有效措施措施,將會產生嚴重的銹蝕后果致預應力孔道注漿狀態對大跨PC箱梁橋受力性能影響研究結構存在安全隱患;二是將預應力鋼筋,孔道注漿體,波紋管以及混凝土結成整體,保證粘結的有效性,從而使構件的抗裂性和承載能力得到加強。這一切都取決于預應力孔道注漿體的飽滿以及漿體的粘結性能。灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保為了更準確掌握和應用好上述兩種方法,對其在加固混凝土結構時進行受力分析是有必要的。因此,本文以兩座鋼筋混凝土剛架拱橋的加固工程為例,應用有限元分析軟件作為工具,分別計算了加固前結構設計截面的抗力與撓度,以及加固后結構關鍵部位的應力和撓度,分析其適用性,為確定合理的加固方案提供了保證,對其他橋梁結構的加固有一定的參考價值。漿料能充分填充各個角落。
3<我們知道,預應力筋在張拉后,基本上是緊貼孔道。已壓注水泥漿的預應力筋的腐蝕,主要成因為電化學腐蝕。電化學腐蝕的要素除外電、感應電等存在的電流影響外,還需具備電解液(或有害氣體)。/SPAN>. 支模
根據確定的灌漿方式和灌漿施工圖混凝土澆筑初期,水妮水化產生大量水化熱,使混凝土的溫度良快上升但由于混凝土表面散熟條件較好,熱量可以向大氣中散發,因而溫度上升較少,而混凝土內部由于散熱條件較差,熱量散發少,因而溫度上升較多,內外形成溫度樣度,形成內外約東。結果混凝土內部產生壓應力預應力技術一直以來是各國土木工程學者非常感興趣的研究熱點,而預應力筋的預加力施加方法以及相應的錨固技術歷來就是預應力技術中的關鍵技術。對于CFRP片材這種新型材料也不例外,由于CFRP材料力學性能的獨特性,鈣礬石型膨脹劑,包括UEA、HEA等該類膨脹劑以硫鋁酸鈣水化物作為膨脹源,摻入混凝土中后,可在水化初、中期生成大量水化硫鋁酸鈣鈣(礬石)。水泥石中存在結晶狀鈣礬石和膠凝狀鈣礬石,其結晶生長和吸水腫脹構成水泥的膨脹驅動力。使混凝土產生適度體積膨脹。在鋼筋和鄰位構件的約束下,便可在混凝土結構建立O.3.0.8MPa的預壓應力,從而防止或減輕混凝十因收縮造成的開裂,使混凝土結構更加密實。該類膨脹劑的主要特性是:摻UEA后的混凝土與未摻的普通混凝土相比,凝固前的流變性質相近,但摻UEA的混凝土的坍落度損失比普通混凝土稍快,凝結時間稍短;在規定摻量下,混凝土28天抗壓強度與未摻的普通混凝土強度相近,后期強度持續增長;摻UEA的混凝土抗滲標號大大優于普通混凝土,抗凍標號一般可大于D150,對鋼筋無銹蝕作用;(摻UEA膨脹劑的混凝土,其膨脹一般發生在混凝土硬化的早、中期。鈣磯石類膨脹劑的白生膨脹變形主要發生在混凝土硬化的早、中期,而此時混凝土本身的徐變度較大,很大一部分膨脹變形被松弛,而混凝土后期的收縮卻難以得到有效補償。從理論上看,最佳的膨脹發生時間,應在水泥水化熱最高溫升之后,在混凝土顯著的降溫之前產生膨脹。其作為預應力片材力筋的張拉技術,以及錨固技術也是制約CFRP預應力技術發展的關鍵。下面將從對CFRP片材預應力施加方法以及錨固技術的不同來介紹國內外的研究發展。,面層產生拉應力,當該拉應力超過混凝土的抗拉強度時,混凝土表面就產生裂縫。支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
4. 灌漿料的攪拌
按產品合格證上推薦的水料比確定加水量,拌和用水應采用飲用水,水溫以5~40℃為宜,可采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
2).灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
3).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
4).每次灌漿層厚度不宜超過100mm。
5).較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
6).灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
7)對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
8).設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
9).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
10)模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
11)灌漿中如出現跑漿現象,應及時處理。
12)當設備基礎灌漿量較大時,應采用機械攪拌方式,以保證灌漿施工。
6、養護
1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的應用范圍
(1)需高精度安裝的設備設備基礎的一次灌漿和二次灌漿。
(2)鋼筋栽埋及建筑、巖土工程的錨桿錨固。
(3)建筑加固改造工程,梁柱接頭、變形縫、施工縫澆筑。
(4)道路、橋梁、隧道、機場等工程搶修施工使用。
(5) 鐵路軌枕的錨固施工。
(6) 柱濕包鋼加固用于灌注角鋼和柱間隙縫。
★參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。景德鎮無收縮灌漿料銷售|江西灌漿料廠家直銷。