|
|
★灌漿料的用途
(1)、混凝土結構加固和修補:
1.使用高強無收縮灌漿料進行混凝土梁,板,栓等構件的截面加大加固處理。
2.使用CGM高強無收縮灌漿料進行混凝土孔洞修補。
3.后張預應力混凝土結構管道灌漿及封錨。
4、使用CGM高強無收縮灌漿料進行混凝土路面的修補。
(2)、設備基礎二次灌漿 :適用于機器底座,發腳螺栓等;以及鋼結構(鋼軌,鋼架,鋼柱等)與基礎固定連接的二次灌漿。<把酸性環境下混凝土分為腐蝕層和未腐蝕層。如果進一步劃分,可以分為完全腐蝕層、未完全腐蝕層和未腐蝕層。不同層間主要區別在于CaO百分含量(w(CaO))和孔隙率。完全腐蝕層孔隙率最大,CaO的含量最少,主要由硅膠、鐵膠、鋁膠等物質組成,此外還有少量的CaO和MgOl70等。腐蝕層中Ca2+的流失是由于水泥水化產物中的堿性物質與酸發生反應生成可溶性的鈣鹽(反應1.1~1.3,以硝酸為例),溶解于孔溶液中并流失,使基體中水泥水化產物逐漸減少,孔隙率隨之上升。RobinE.Beddoe等研究發現用普通硅酸鹽水泥和最大粒徑為0.5mm的石英砂,水灰比為0.6制作的砂漿在pH=4.5的醋酸中侵蝕16d后,砂漿表面的孔隙率由原來的15%體(積百分數)變化到33%。此時,外界的侵蝕溶液更容易進入基體內部與更多的水化產物發生反應,使侵蝕速率加快,致使混凝土結構的解體崩潰。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">
(3)、地腳螺栓錨固及鋼筋栽埋 :
地鐵,隧道,地下等工程逆打法施工縫的嵌固。
2.建筑物的橋梁,板柱基礎,地坪和道路的補強。
3. 可進行地腳螺栓和螺為了防止大體積承臺混凝土的開裂,通過在混凝土結構內部埋設冷卻水管和測溫點,通過冷卻水循環,降低混凝土內部溫度,減小內表溫差,控制混凝土內外溫差小于25℃,通對混凝土構筑物的裂縫我國規范規定在設計上有一定的允許寬度。國際上也根據本國的特點,對混凝土的裂縫都有明確的規定,說明混凝土結構的裂縫在一定范圍內是允許的,要想控制混凝土構筑物不開製是很難的,關鍵是對影響結構安全和使用性能的有害裂縫的控制。過測溫點測量,掌握內部各測點溫度變化,以便及時調整冷卻水的流量,控制溫差。在開始澆筑確時即通冷水,連續通水15天,水壓可根據天氣和水化熱情況適當調整,應將出水口水溫盡量控制在40℃以下。栓和鋼筋的錮固及結構補強。
BR高強無收縮灌漿料性能特點,初始流動度大于300mm,30min后保留目前,許多學者在已有的工作基礎上,應用飛速發展的計算技術,綜合多學科的基本理論,考慮混凝土的入模溫度、混凝土的彈性模量的變化、水泥水化熱散熱規律、外界氣溫變化、養護措施、地基約束及徐變影響等因彈性階段鋼筋均勻伸長,截面面積無明顯變化,未銹鋼筋的彈性階段較長,彈性極限荷載值較大;屈服階段在荷載增加較少的情況下,鋼筋的變形增加顯著,未銹鋼筋屈服階段較長,且鋸齒形屈服平臺非常明顯。素采用有限差分法或有限單元法求解一、二及三維大體積混凝土溫度場;而溫度應力場,則多采用有限單元法取得結果。值為260<結構粘鋼加固是建筑結構工程的加固新技術。此法采用特制的緯構膠粘劑,將鋼板粘貼在鋼筋混凝土結構的表面,最終達到加固和增強原結構強度和剛度的目的。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">mm,一天強度大于20Mpa,三天強度大于40Mpa,28天強度大于60Mpa.
★灌漿料的八大特點
1、微膨脹性:保證設備與基礎之間緊密接觸, 二次灌漿后無收縮。
2、灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
在稀溶液和中性溶液中,鋼筋一般比較容易鈍化,而由于鹵素離子能明顯加速金屬的陽極溶解過程,它屬于一種活化作用,一旦有鹵素離子存在則能延緩或完全防止鈍態的出現。鋼筋表面上的氧化膜在一定條件下具有保護作用,由于普通水泥混凝土的水膜層具形態效應”反映在粉煤灰的礦物組成主要是海綿玻璃體和鋁硅酸鹽玻璃微珠,這些球形玻璃體表面光滑、粒度細、質地致密、內比表面積小,在和高效減水劑的共同作用下,能大大提高混凝土的流動性,改善混凝土的施工性能。有強堿性,對鋼筋能起到一些鈍化作用,但由于直接粘附在鋼筋上的水泥沙漿層起碳化作用,當pH值降低到小于9.9.5時即堿性降低,對造成鋼筋完整的鈍化保護膜便有破壞作用。因此,對鋼筋表面進行人工鈍化處理或利用鋼筋表面所制的強堿性混凝土層以保護鋼筋銹蝕便具有意義。在中性或堿性介中數量不多的強氧化劑都能引起鋼筋表面的鈍化。鈍化處理在鋼筋尚未受到大氣腐蝕前進行。3、抗離析性能:高強無收縮灌漿料克服了現場使用中因加水量偏多所導致的離析現象。<鋼筋銹蝕引起混凝土開裂破壞的過程包括:鋼筋脫銹階段。由于混凝土的碳化,使得鋼筋周圍混凝土的pH值下降到11.5以下時,鋼筋的鈍化膜被破壞,鋼筋開始脫鈍銹蝕。自由膨脹階段。由于鋼筋與混凝土接觸的界面上存在微細空隙,鋼筋表面銹蝕時產生的銹蝕產物逐步填充其孔隙。如果鋼筋銹蝕量小于填充空隙所需的銹蝕量時,在鋼筋周圍混凝土中就不會產生任何應力。應力產生階段。當鋼筋銹蝕量超過填充鋼筋與混凝土接觸面空隙所需的銹蝕量時,則在鋼筋周圍的混凝土界面上產生膨脹壓力,膨脹壓力隨著鋼筋銹蝕量的增大而增大。自由膨脹階段和應力產生階段取決于鋼筋與混凝土接觸界面上微細空隙的大小和鋼筋的銹蝕量。微細空隙的大小與混凝土凝結硬化時的收縮量、混凝土的澆搗質量有關,水泥用量越大、水灰比越大、混凝土密實度越小則微細空隙越大;鋼筋的銹蝕量與銹蝕速度、銹蝕產物的成分有關。/SPAN>
4、綠色環保:不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不 爆,可按一般貨物運輸。
由此可以看出,混凝土早期自收縮大,特別是從澆筑開始的ld內,自收縮增幅很快,這一特點必然導致混凝土內部缺陷增多,從而造成強度損失及耐文件資料檢查:設計施工圖紙及相關文件、錨固膠的出廠質量保證書(或檢驗證明,其中應有主要組成及性能指標、生產日期、產品標準號等)、鋼筋、錨桿的質量合格證書(含鋼號、尺寸規格等)、施工工藝記錄及操作規程和施工自檢人員的檢查結果等文件。久性降低。重視混凝土的早期自收縮,進一步研究補償方法及抑制措施,防止收縮裂縫的產生,是提高混凝土綜合性能,更好地滿足工程實踐的一個十分重要的問題。
5、灌漿料的早強、傳統壓漿技術的原材料要求為:水泥的強度不宜低于42.5,且不得有結塊,同時水泥橋臺新建輔助擋土墻加固法。當橋臺前墻水平土壓力過大,導致橋臺傾斜,臺背之后新建一重力式擋土墻來平衡。墩臺拓寬方法。利用舊橋基礎,在墩臺蓋梁挑出懸臂,達到加寬臺帽、蓋梁,以便安裝需加寬的上部構造。要求加寬墩合的臺身、基礎須穩定、良好,結構計算合格。否則,應增現澆加寬部分的墩臺及基礎。宜采用硅酸鹽水泥和普通水泥;水宜采用清潔的引用水;外加劑宜采用低含水量、流動性好、最小滲出及膨脹性等特性的外加劑。同時它不得含有對預應力鋼絞線或水泥有害的化學物質。高強:1-3天抗壓強度30-50Mpa以上。
6、可冬季施工:允許在-10℃氣溫下進行室外施工。
7、灌漿料的抗開裂能力:現場使用中因加水量不確定、環境溫度不確定以及養護條件限制等因素裂紋現象。
8、耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。<碳化收縮:大氣中的二氧化碳與水泥的水化物發生化學反應引起的收縮變形稱為碳化收縮。由于各種水化物不同的堿度,結晶水及水分子數量不等,碳化收縮量也大不相同。碳化作用只在適中的濕度(50%左右)才發生。其速度隨二氧化碳濃度的增加而加快,碳化收縮與干燥收縮共同作用導致表面開裂和面層碳化。干濕交替作用并在二氧化碳存在的空氣中混凝土收縮更加顯著。/o:p>
★灌漿料灌漿的準備
1、檢查管道出氣孔,有凝義時,選擇有代表性的管道中進行灌漿試驗。
2、灌漿設備、抽真空設備,灌漿泵的壓力:0.4~0.7Mpa、真空泵的真空壓力:—0.1Mpa.
3、采用鼓鳳或按批準的規定方法進行管道清理,將灌道中的水、冰和雜物清理干凈。
★灌漿料<分析了不同摻量杜拉纖維和聚丙烯纖維對混凝土鋼筋腐蝕程度的影響,結果同樣表明杜拉纖維和改性聚丙烯纖維的摻入對鋼筋混凝土中鋼筋的腐蝕有抑制作用。當兩種纖維摻量達到0.9Kg左右時,此時擬合曲線導數Y’(x)=o,鋼筋耐腐蝕效果相對取得最好效果。當纖維摻量大于]Kg時,阻蝕效果出現下降,但其抑制腐蝕的效果仍然明顯好于素混凝土試塊。也就是說摻入杜拉纖維和改性聚丙烯纖維的鋼筋混凝土試塊中的鋼筋普遍比素鋼筋混凝土試塊中鋼筋的電化學穩定性要好,由此使得其耐腐蝕性也要好。B>的操作
1、灌漿完成后,應防止漿體從管道在加載初期,荷載穩步上升,鋼筋滑移量很小,當加載到一定程度,發現鋼筋根部砌體有隆起的現象,周圍出現環狀裂縫,并且能聽到磚砌體開裂的聲音。最終鋼筋和部分磚砌體一同被拔出。當植筋深度大于等于8d時,在發生鋼筋與磚砌體一對于施工期混凝土墻體裂縫開裂原因的判斷,首先要進行以下幾項觀察:注意觀察裂縫的出現時間;注意觀察裂縫的形態與走向;注意觀察裂縫的性質方法;注意觀察裂縫分布的規律性。來判斷裂縫產生的原因:根據墻體上裂縫的發生時間可以進行如下推斷。同拔出的破壞同時,磚與砂漿的粘結面也發生破壞。流失。
2、灌漿必須從最低處或從最低的鋼絞線開始,以恒定的速度連續進行灌漿,灌滿為止,在波紋管中應適當放慢灌漿速度。
封錨
1、對需要封錨的錨具,在管道灌漿完畢后先將錨具周圍沖洗干凈并混凝土結構加固技術是一門新興的學科,結構試驗研究、理論分析及規范編制等基礎理論工作,近年來均有很大進展。日本在混凝土結構裂縫修補技術方面,較系統全面,編制了《混凝土工程裂縫調查及補強加固技術規程》;原蘇聯在工業廠房加固設計構造方面,積累了較為豐富的經驗,出版有結構加固構造圖集;英國、德國在混凝土結構缺陷修補、防水及防腐處理技術方面,也取得了不少成功經驗。對梁端混凝土進行鑿后設置鋼筋網,在錨頭外加裝錨罩,用灌漿材料將錨頭封死,最后在封錨的灌漿材料外涂刷防水涂層。
2、當漿體硬化時,所有開孔,灌漿管和氣孔均要緊密封口以防止水有有害物的侵入;
注:1、灌漿層厚度δ≤150mm時,選用CGM-1(CGM-380)或CGM-2(CGM-340);碳纖維材料用于混凝土結構加固修補筑中有相當一部分由于當時設計荷載標準加固修補結構技術是繼加大混凝土截面、的研究始于2O世紀80年代美、11等發達國低造成歷史遺留問題,一些建筑由于使用粘鋼之后的又一種新型的結構加固技術家。我國的這項技術起步很晚,但隨著我國功能的改變,難以滿足當前規范使用的需我國2008年10月1日公布的Ⅸ公路橋梁加固求,亟需進行維修、加固。目前常用的加固設計規范》中,對碳纖維加固修補結構技術方法有很多,如:加大截面法、外包鋼加固作了進一步的規范。灌漿層厚30mm<δ<150mm時,選用CGM-2(CGM-340)或CGM-3(CGM-300)施工期間主要因間接作用引起的混凝土開裂與在結構正常使用期間因荷載作用引起的開裂在成因、危害及防治措施等方面均不相同。對于施工期間因變形引起的混凝土開裂在近幾年才受到關注。有關研究多集中在某單一環節,對諸多因素綜合考慮的研究還不多。對于施工期間主要因混凝土早期收縮引起的混凝土開裂研究則主要體現在兩個方面:混凝土基本收縮性能試驗及理論研究;建立在工程實踐基礎上的混凝土裂縫控制研究復合破壞:當植筋深度較大時,但是植筋抗拔力沒有達到鋼筋的屈服強度,容易在靠基材表面發生錐體破壞而在較深處發生植筋膠與基材粘結破壞,并且沿狄縫發生植筋鋼筋應力分布為,接近孔口處正應力最大,沿植筋深度方向由外向內正應力依次遞減。砌體基材破壞,表明砌體植筋破壞受砌塊大小的影響。。 ;灌漿層厚度δ≥30mm時,選用CGM-3(CGM-300)或CGM-4(CGM-300)型;路面快速搶修,選用CGM-4(CGM-270)型。
2、抗壓強度按:《GB177-85水泥膠砂強度試驗方法》;膨脹率按:《GB119-88混凝土外加劑應用技術規范》。
★灌漿料的包裝貯運
1.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2.保質期為6個月,超出保質期應復檢合格后方可使用 。
★灌漿料的配制:
1、CGM灌漿料拌和時,加水量應按隨貨提供的產品合格證上的推薦用水量加入,攪拌均勻即可使用。對于地腳螺栓錨固和栽埋鋼筋,用水量可根據工程實際情況適當減少。拌和用水應采用飲用水,使其它水源時,應符合現行《混凝土拌和用水標準》(JGJ63)的規定。
2、 CGM灌漿料的拌和可采用機械攪拌或人工攪拌。 推薦采用機械攪拌方式,攪拌時間一般 為1-2分鐘(嚴禁用手電鉆式在預應力鋼絞線施工完成后,切除外露的鋼絞線,用無收縮水泥砂漿封錨,并將錨板、夾片、外露鋼絞線全部包裹,覆蓋層大于1混凝士中復合涂層鋼筋在實驗室千濕循環中的腐蝕電流密度隨循環周期增加逐漸減小,在循環實驗后期,數值比較接近環氧涂層鋼筋。初期復合涂層鋼筋的腐蝕逛流密度較大,餐楚低于鍍鋅鋼筋,是由于復合涂層最外層的環氧涂層具有較多的小缺陷,部分缺陷使鍍鋅層直接暴露于混凝土環境中,發生腐蝕。但是接觸面積較小,因而腐蝕電流密度較小。隨著環氧涂層缺陷下的鍍鋅找出壓漿不密實或空洞的區段后,則對該區段 采用增壓補漿的方法進行二次壓漿處理,在該段的原鉆孔點位上埋設壓漿管或出漿管,用環氧樹脂砂漿進行固定、堵塞。層發生腐蝕,鋅的腐蝕產物不斷在鋅表面聚集,逐漸堵塞了缺陷部位,使鍍鋅層與腐蝕介質隔離,從而逐漸減小了腐蝕電流密度。5mm,封錨后36~48小時內進行真空灌漿。在壓漿前,孔道和兩端必須采用氣密錨帽密封,且孔道內無石、砂及其他雜物,確保孔道暢通、清潔、干爽;同時清理錨墊板上的灌漿孔,保證灌漿孔與孔道暢通連接;確定抽出真空端與灌漿端,安裝引出管、球閥和接頭,并檢查其功能,確保施工安全、順利。攪拌器)U形箍的存在可以起到一定抑制裂縫開展的作用,從而在一定程度上有效防止早期剝離破壞的發生,但是相對的,斜裂縫的發展又可能最終導致u形箍的兩側剝離,同時碳纖維是單向受力材料,它在垂直于纖維絲的方向上強度極低,如圖5.5(b)所示,構件在受彎過程中,製繼的發展和底部碳纖維受力的增長會導致混凝土與碳纖維間的界面剪應力不斷增長,最終就有可能使u形箍在梁轉角處發生剪斷或自身我u離而導致抗利高構造失效。碳纖維材料的單向受力性能是其不能有效發揮抗剝離有效性的根本原因。所以,通過u形箍來抵抗普通碳纖直接應力裂縫是指外荷載引起的直接應力產生的裂縫。直接應力裂縫產生的原因有如下。施工階段不嚴格按照設計圖紙施工,擅自更改結構施工順序改變結構受力模式;材料強度不足、施工工藝粗糙,如預應力筋張拉不到位,或為搶工期在混凝土強度沒有達到規定要求時就拆模等。如某橋施工時為搶工期,在梁的懸臂澆筑施工中,既不壓重,又不調整掛籃拉索,不注意澆筑順序,澆筑順序由里向外,由于掛籃下撓,使在與上一梁段的連接處出現了垂直裂縫。維加固受彎構件的剝離破壞是不能有效解決剝高風險問題的。。采用人工攪拌時,應先加入2/3的用水量拌和2分鐘,其后加 入剩余水量攪拌至均勻.
3、現場使用時,嚴禁在CGM灌漿料中摻入任何外加劑、外摻料。
4、 每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
5、 冬季施工時,CGM灌漿料及拌和水應符合現行《鋼筋混凝土工程施工及驗收規范》(GB50204)的有關規定。
6、 攪拌地點應盡量靠近灌漿料施工地點,距離不宜過長。
參考用量:
&探究筑混凝土施工期間間接裂縫形成的原因,在工程實踐的基礎上,從原材料優選、配合比優化、結構設計及構造、施工過程控制、管理等方面綜合分析研究,提出有效措施預防、控制裂縫的產生,同時對有害裂縫采取修補、補強等,具有較大的理論意義及工程實用價值。nbsp; 參考用量計算以2.28~2.4噸/立方米為依據,計算實際使用量。
同樣具有火山灰活性的礦粉,等量代替水泥對其耐酸性改善效果并沒有粉煤灰明顯,A.Bertron認為礦粉中的CaO含量高,與CH反應生成的C.S.H凝膠的c/S要高,而粉煤灰中的CaO含量低得多,生成的C.S。H凝膠的C/s低。在酸性環境下,低c/S比C—S.H凝膠具有比高C/S比凝膠更好的穩定性,在相同酸性環境下,C/S低的C.S.H凝膠釋放Ca2+的速率要慢得多。CaijunShi和J.A.Stegemann也認為水泥的耐酸性取決于水泥水化產物的耐酸性。鷹潭早強灌漿料廠家直銷。