|
|
★灌漿料的產品特點
自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
可冬季施工:允許在對增大截面法加固軸心受壓RC構件的可靠度進行研究,結合當前實施的混凝土加固規范所含可靠度水平,對加固后構件的可靠度計算方法進行優化。我國國試驗數據表明用無機膠粘貼碳纖維布加固鋼筋混凝土梁,粘貼一、二、三層碳纖維布時,試驗梁的屈服荷載和極限荷載近似成線性增長,盡管如此,碳纖維布的層數并非越多越好。隨著碳纖維布層數的增多,試有無頂板約束,即頂板混凝土是與墻體混凝土一起澆筑還是后澆筑,墻體由于收縮引起的最大主應力差別很大,會直接影響裂縫的產生。頂板混凝土在墻體混凝土后澆筑時無(頂板約束)墻體由收縮引起的最大主應力接近2.4N/ram2,幾乎達到CA0混凝土抗拉強度值,開裂可能性大。驗梁破壞時更接近脆性破壞,破壞形態也隨之發生改變,從粘貼一、二層碳纖維布時碳纖維布的拉斷破壞到粘貼三層碳纖維布時碳纖維布的剝離破壞。因此建議碳纖維布層數不要多于三層。家基礎研究重大項目(攀登計劃)中的重大土木與水利工程安全性與耐久性的基礎研究》引用有限元理論,建立混凝土一粘結劑一加固材料的受力模型,分析其應力應變特性,針對不同的加固方案,分析加固后混凝土的溫度膨脹系數a一般為10x10-6/℃,極限拉伸值ep一般在50-100x10'之間,此時容許混凝土的內外溫差一般在20-25℃之間尚未開裂。這主要因為結構物不可能受到絕對約束,混凝土也不可能完全沒有徐變和塑性變形的緣故。另外,美國懇務局曾測得在全約束條件下,由于溫度變形而引起的溫度應力值可達到1.9-2.0MPa。這足以說明,改善約束條件(特別是基礎的嵌固狀態)對防止混凝土的開裂有很大的影響。結構構件的可靠度,分別給出計算模型和計算公式,并利用分項系數法與可靠度校準等方法,對當前施行的規范進行校核,對于完善建筑結構的可靠度理論具有重要的指導作用。-10℃氣溫下進行室外施工。
灌漿料的抗離析:克服了現場使用中因加水量偏多所導致的離析現象。
微膨脹性:保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
抗開裂:現場使碳化收縮:大氣中的二氧化碳無粘結預應力體系。無粘結預應力鋼筋是指經涂抹防腐油脂,用聚乙烯套管包裹制成的預應力鋼筋。使用時它按設計要求鋪放在模板內,然后澆筑混凝土,待混凝土達到設計要求強度后,再張拉錨固。無粘結預應力鋼筋與混凝土不直接接觸,兩者產生相對滑移而成為無粘結體系。其主要優點是工藝簡單,張拉設備輕,施工方便,有利于分散布筋與高空作業。與水泥的水化物發生化學反應引起的收縮變形稱為碳化收縮。由于各種水化物不同的堿度,結晶水及水分子數量不等,碳化收縮量也大不相同。碳化作用只在適中的濕度(50%左右)才發生。其速度隨二氧化碳濃度的增加而加快,碳化收縮與干燥收縮共同作用導致表面開裂和面層碳化。干濕交替作用并在二氧近年來,工程裂縫是影響正常使用極限狀態的主要因素。裂縫產生的原因主要是變形作用,如溫度變形、收縮變形、基礎不均勻、沉降變形等多因素,統稱為變形作用引起的裂縫問題,此類裂縫幾乎占全部裂縫的80%以上。對于變形作用引起的裂縫研究還很不成熟,缺乏有美規范及規程,它涉及到結構設計、地基基礎、施工技術、材料質量、環境狀近年來部分單位為了減小截面尺寸,追求經濟指標,在預應力箱梁底板和板梁結構中都采用扁錨,有的單位還申請專利、出標準圖,這是不可取的。由于扁錨的張拉工藝是采用逐根張拉,整體張拉設備技術不成熟,導致鋼絞線受力不均勻。采用扁波紋管留孔,扁孔空間很小,孔道摩阻大,特別是超長孔道采用一端張拉工藝,問題更加嚴重。態等諸多因素,特別是泵送混凝土施工工藝的發展,使得混凝土製裝搾制的技術難度大大增加。例如過去干硬性及預制混凝土的收縮變形多有為25x10-4~35xl0-4,而現在票送流態混凝土約為6x10-4~8x10-4,水化熱也大幅度增高。化碳存在的空氣中混凝土收縮更加顯著。用中因加水量不確定、環境溫度不確定以及養護條件限制等因素裂紋現象。
灌漿料的耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。<負彎矩鋼束壓漿不密實,這除了設計時波紋管尺寸選擇過小外,從施工角度看可能是由于壓漿時壓力不夠(壓漿機無壓力表或壓力表不準確)或操作不當,漏摻膨脹劑或水泥漿流動度過大,向低處流淌,導致孔道壓漿不飽滿,降低了預應力筋與混凝土間的握裹力。/SPAN>
早強、高強:2天抗壓強度≥20Mpa;3天抗壓強度≥30Mpa;28天抗壓強度≥65Mpa。
具有自流性好,快硬、早強、高強、無收縮、微膨脹;無毒、無害、耐老化、對水質及周圍環境墻體裂縫與墻厚有一定關系,當墻厚增加時裂縫的寬度與條數會增加,因而需要增加水平配筋量。大面積混凝土結構裂縫問題十分復雜,它涉及到和工程結構相關的方方面面。對大面積混凝土的裂縫控制更是涉及到結構、建筑材料、施工、環境等多專業、多學科。隨著各種新材料的不斷涌現,各種檢測手段的不斷發展,對大面積混凝土裂縫問題的研究也在不斷更新變化,裂縫的開展日益受到學術界及工程界人士的關注。當墻體的長度大于一定值如30m時,裂縫的條數或間距與墻長沒有顯著的關系,墻體裂縫的寬度與墻長幾乎預應力碳纖維板加固鋼筋混凝土結構技術具有良好的可操作性。加固材料輕便,容易運輸;現場調配和安裝方便。加固施工對原結構的損傷也非常小,實用化有著十分重要的意義。且基本沒有增加原結構自重預應力碳纖維加固的施工周期短一(般為1~2月),需要的人力少。整體加固成本較低,對交通的干擾小,避免了因此而帶來的經濟損失。沒有關系,在9m長的墻上也可能出現0.7.0.9mm寬的裂縫,在102m長的墻上如水平配筋量足夠也能把裂縫控制在0.3ram以下。墻體裂混凝土結構在荷載作用下,不僅產生彈性變形,隨著時間的延續還產生非彈性變形,即徐變,徐變引起應力松弛。徐變引起的溫度應力松弛,對防止混凝土開裂有益,因此在計算混凝土溫度應力時應考慮應力松弛的影響。松弛與加荷時混凝土的齡期有關,齡期越短,徐變引起的松弛也越大;另外,還與應力作用的時問長短有關,應力作用時間越長則松弛亦越大。縫的分布和走向與墻體的結構形式與剛度有關,在剛度變化的地方往往易出現裂縫,不同處的剛度影響著裂縫的走向,裂縫一般偏向剛度較小的部位。無污染,自密性好、防銹等特點。
灌漿料主要用于:地腳螺栓錨固、飛機跑道的搶修、核電設備的固定、路橋工程的加固、機器底座、鋼結構與地基懷口、設備基礎的二次灌漿、栽埋鋼筋、混凝土結構加固和改造、舊混凝土結構的裂縫治理,機電設備安裝,軌道及鋼結構安裝,靜力壓樁工程封樁,墻體結構的加厚及漏滲水的修復,各種基礎工程的塌陷灌漿以及各種道路、橋梁、隧道、機場等搶修工程。
★灌漿料一些板還出現了板截面寬度的損失。這些破壞主要集中在板的底部及棱角,其中幾乎所有試驗用板兩邊角區鋼筋保護層都已脹裂脫落,分析其主要原因是:板的保護層厚度較小,大氣環境下鋼筋的銹蝕機理多為電化學銹蝕,其銹蝕機理為混凝土碳化或氯離子侵入后,鋼筋表面原有鈍化膜破壞,在氧與水的共同作用下發生電化學Bazant增艮據電化學理論,建立海洋環境下混凝土中鋼筋銹蝕的物理模型,提出混凝土順筋脹裂破壞的兩種形態:當S>6D(S為鋼筋間距,D為鋼筋直徑)時,混凝土保護層順筋脹裂沿著45。方向;當C>(S—D)/2S(C為保護層厚度)時,混凝土保護層順筋脹裂沿著平行于鋼筋層面方向。Buslov等根據對四個海灣碼頭現場調查的結果,把樁的順筋脹裂破壞形態劃分為順筋脹裂、混凝土剝落和層裂三類。反應。銹蝕發生后,鋼筋因其截面面積減小及銹坑引起的應力集中而發生力學性能的退化。鋼筋混凝土地鐵隧道與地上建筑因其所處的位置不同,所以隧道的工作環境、施工工藝、使用功能等有所不同,其耐久性研究具有特殊意義。地鐵在運營過程中,產生的雜散電流對隧道襯砌結構耐久性產生影響。地鐵雜散電流是由采用直流供電牽引方式的地鐵工程因受到污染、滲漏、和高應力破壞等原因而泄露到道床及其周圍土壤中的電流,是在規定線路之外流動的電流的總稱。構件或結構因鋼筋強度的下降、鋼筋與混凝土間的粘結破壞及鋼筋銹脹而發生承載能力下降。鋼筋間距較大,導致板底面出現順筋破壞,未出現整層剝落,兩邊角區在預應力鋼絞線施工完成后,切除外露的鋼絞線,用無收縮水泥砂漿封錨,并將錨板、夾片、外露鋼絞線全部包裹,覆蓋層大于15mm,封錨后36~48小時內進行真空灌漿。在壓漿前,孔道和兩端必須采用氣密錨帽密封,且孔道內無石、砂及其他雜物,確保孔道暢通、清潔、干爽;同時清理錨墊板上的灌漿孔,保證灌漿孔與孔道暢通連接;確定抽出真空端與灌漿端,安裝引出1991年,在美國和加拿大聯合舉行了有關結構耐久性的國際會議。1993年,國際橋梁與結構協會(mSE)在丹麥召開了結構殘余能力國際學術會議。2001年,國際橋梁與結構協會(認BSE)代表CIB、ECCS、FIB、RILEM等組織在馬爾他島召開了“安全性、風險性與可靠性一工程趨勢"的國際學術會議。管、球閥和接頭,并檢查其功能,確保施工安全、順利。處鋼筋易受來自于板底面和側面的雙向氯離子侵蝕作用,造成氯離子大量在鋼筋周圍富集,以及角區鋼筋更易得到銹蝕所需要的氧和水分,鋼筋銹蝕速度加快。另外角l又:混凝土受周圍混凝土的約束較小,鋼筋較小的銹蝕就會使保護層開裂。的包裝貯運
1.包裝規格:50kg/袋,存放在通風干燥鋼預制T梁之間橫隔板安裝時,支座預埋鋼板與調平鋼板焊接時,若焊接措施不當,鐵件附近混凝土容易燒傷開裂。采用電熱張拉法張拉預應力構件時,預應力鋼材溫度可升高至350℃,混凝土構件也容易開裂。試驗研究表明,由火災等原因引起高溫燒傷地混凝土強度隨溫度的升高而明顯降低,鋼筋與混凝土的粘結力隨之下降,混凝土溫度達到300"C后抗拉強度下降到50%,抗壓強度下降60%,光圓鋼筋與混凝土的粘結力下降80%;由于受熱,混凝土體內游離水大量蒸發也可以產生急劇收縮。筋混凝土中鋼筋的腐蝕情況隨著半電池電位的增大,發生腐蝕的可能性減小。由半電池電位可以看出,素鋼筋混凝土試塊鋼筋腐蝕的半電池電位較小,而其它摻入了改性聚阿烯纖維的鋼筋混凝土試塊鋼筋半電池電位相對較大。這說明摻入改性聚丙烯纖維的鋼筋混凝土試塊中鋼筋普遍比素鋼筋混凝土試塊中鋼筋的耐腐蝕性要好。處并防止陽光直射。
2.灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
3.產品包裝以實際發貨為準,此圖片僅為參考。
★灌漿料的灌漿料分類
一、基礎處理
基礎表面應進行鑿毛處理。清潔基礎對混凝土基本收縮性能進行了分析和試驗研究,是從混凝土提供方、從減小混凝土收縮變形和提高混凝土抗裂能力方面著手進行早期收縮裂縫的防治。表面,不得有碎石、浮漿、浮灰、油污和脫模劑等雜物,灌漿前24小時,基礎表面應充分濕潤,灌漿前1小時,清除積水。
二、支模
1、按灌漿施工圖支設模板。模板與基礎、模板與模板間的接縫處用水泥漿、膠帶等封縫,達到整體模板不漏水的程度。
2、模板與設備底坐四周的水平距離應控制在100mm左右,以利于灌漿施工。
3、模板頂部標高應高出設備底坐上表面50mm。
4、灌漿中如出現跑漿現象,應及時處理這說明pH等蘭人l的認硫為酸由環于境摻下入,的在礦大物摻摻量合礦料物的摻密合度料小不于能水夠泥提且高近年來國內外工程界在大體積混凝土結構裂縫控制方面,進行了深入的研究。瑞典律勒歐理工大學的Bemander(1988)9q研究了混凝土結構水化熱致體積變化而引起的早期開裂、約束程度與早期.混凝土變形、硬化混凝土過渡態力學性質等重要作用,指出了建立在裂縫危險性標準基礎上的傳統溫差觀點的不充分性:推導了混凝土水化熱體積變化引起的早期開裂理論,對裂縫進行分類——膨脹階段和收縮階段裂縫:提出了控制早期裂縫的一般原則和實際措施以及控制大體積混凝土裂縫的特殊措施。細混度凝要土大的耐,等久性量代。替水泥配制混凝土時會導致混凝土中漿體所占比例增加,而漿體是混凝土中最易受到侵蝕的部分,所以使混凝土的耐酸性下降。當混凝土處于強硫酸性環境下時,混凝土的表面部分必然被完全侵蝕而失去了原有的結構,如果只是滲透性能和漿體接觸面對混凝土耐酸性能有影響時,那么當不同配比的混凝土抗滲性相似或(良好)時應該具有相似的耐酸性能,那么混凝土應從外向內步步侵蝕,而不是導致混凝土整體性能的崩潰。。
三、灌漿料配制
1、一般地,按通用加固型13-14%的標準加水攪拌,豆石加固型按9-10%的標準加水攪拌。
2、高強無收縮灌漿料的拌和可以采用機械或人工攪拌。建議采用強制式攪拌機機械攪拌,可保證攪拌充分要避免大面積混凝土的表面裂縫和收縮裂縫,首先要降低混凝土的內外大體積混凝土基礎結構裂縫控制技術的研究和應用,不僅僅是工程界人士也是政府和老百姓共同關注的問題,是一個具有重要工程意義的實踐課題,要防止大體積混凝土結構出現危書性的裂縫,必須精心設計、精心施工,才能使裂縫得到有效控制。約束力。降低外約束力,可采取設置后澆帶和設置膨脹混凝土加強帶等的設計方法,根據大量工程實例證明,提出采用膨脹混凝土加強帶時,膨脹加強帶兩側可采用微膨脹混凝土哪EA摻量控制在10%。12對結構耐久性本身的認識不夠探刻:由于影響結構耐久性的因素甚多,結構耐久性失效缺乏準確的定義。現有的規范只能定性的對結構耐久性設計作指導,多從構造部分入手,已有研究成果很難直接用于由于結構耐久性劣化引起的安全性分析以及結構在役狀態和殘余壽命的分析,至于對結構的失效發生機理更是認識不清。%),膨脹加強帶部位采用大膨脹混凝土(ITEA摻量在14%.15%)。此外當混凝土澆筑在基巖或混凝土上時,為減少外部約束力,減少發生貫穿性裂縫的可能性,可采取增設滑動層的做法,滑動層最好采根掘結構不同部位的使用功能及使用條件,需選用不同性能及型號的粘結材料。對于直接涂在混凝土表面的底層涂料,要求能夠滲入到混凝土里面一定深度,對混凝土有很強的滲透性;本占貼碳纖維J=1材的浸漬樹脂,要求有極好的浸滲性,易于滲透碳纖維片材,能保證足夠的'率'占結強度;修補膠用于J真補構件表面不平,要求易于和混凝土結合,有很高的粘結強度。用涂刷二層瀝青膠加一層油氈的做法,經工程實踐證明可取得較好的效果。均勻,攪拌時間3-5分鐘。人工攪拌時間在5分鐘以內完成。攪拌完的灌漿料,隨停放時間表增長,其流動性降低,應在40分鐘內用完。嚴禁在高強無收縮灌漿料中摻入任何外加劑。
四、灌漿施工方法
1、較長設備或軌道基礎,應采用分段施工。
2、灌漿開始后,必須連續進行了,不能間斷,并盡可能縮短灌漿時間。
五、養護
1、冬季施工時,灌漿料<在我國,雖然尚未組織過全面系統的調查研究,但近年來暴露出的問題也很嚴重。1984年,童保全等調查了浙江沿海的22座鋼筋混凝土水閘,其中因鋼筋腐蝕而導致破壞的占56%;1985年,單國梁等對連云港l號、2號碼頭進行了考察,發現鋼筋腐蝕破壞的縱梁根數分別占總數的58%和84%;1988年,許冠紹等對40座用于淡水的鋼筋混凝土水閘進行了調研,發現鋼筋腐蝕導致混凝土結構破壞的水閘占全部的62%。/B>、拌和水及養護措施應符合現行《混凝土結構工程施工質量驗收規范》(GB50204)的有關規定。
2、灌漿后24-36小時不可受到振動,以避免損壞未結硬的灌漿層。
3、灌漿完畢,灌漿料初凝后應立即加蓋草袋或巖棉被,并保持濕潤。
1、高早強型專用灌漿料,主要用于:施工時間短,4小時強度達C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,路面快速修復。
2、高強通用型灌漿料,主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,有抗油要求的設備基礎二次灌漿。
3、高強豆石型加固灌漿料,主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和易使混凝土澆筑后出現較大沉降的主要原因有:拌制混凝土時坍落度過大或混凝土中使用的骨料級配不連續或是砂率選擇不合理;混凝土攪拌時間過短,造成水與水泥沒有充分混合;澆筑時漏振或振搗時間、方法不正確;混凝土模板綁扎、支撐強度不夠,在澆筑混凝土時出現模板移動;在澆筑混凝土時各層接搓處振搗不到位(即沒有穿透下層混凝土)及施工時的氣候條件干燥、高溫、澆筑后養護不及時,都是導致這類裂縫產生的原因。地坪的補強加固(修補厚度≥40mm),有抗油要求的設備基礎二次灌漿。
4、高強超細型專用灌漿料,主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿。灌漿施工說明。
建筑工程設置后澆帶的優點是對結構抗震、防水有利,簡化建筑構造,便于施工,并可節約材料如(橡膠帶、紫銅片、金屬片等),對于無伸縮縫結構的裂縫處理比處理伸縮縫漏水容易。南昌青云譜超早強灌漿料銷售。