(1) 高韌性 可化解由動設備傳遞來的可能使水泥基灌漿層爆裂的動荷載。(2) 灌漿料的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替研制了具有工程實用價值的碳纖維板的機械式錨具及完整的張拉體系,推動預應力碳纖維板加固技術走向工程實用化的進程。應用預應力纖維板對瀏陽市金剛頭橋進行了加固,并對其進行了荷載試驗,對預應力碳纖維板加固的效果進行了評估。根據材料的熱工性能,利用簡化的溫度分布對預應力碳纖維板加固橋梁的溫度效應進行了理論分析。通過對實測結果與理論結果的比較,得出了溫度應變的計算公式。根據混凝土、鋼筋和CFRP的徐變性能,對預應力碳纖維板加固橋梁進行了時效分析,得出了時效應變的計算公式。并對實際測量結果與計算結果分別進行了分析和比較比較,得到了相近的結論。、振動受壓的惡劣物理工況下長期使用無塑性變形。
豆石加固型 含5~10mm大骨料,適用于灌漿層厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥60mm)。
CGM-4<
碳纖維材料折減系數取值都是基于有機膠粘貼碳纖維布加固混凝土結構而提出的,這些折減系數并不能直接應用于無機膠粘貼碳纖維布加固混凝土結構的抗彎承載力計算中,但對于我們提出適用于無機膠粘貼碳纖維布加固混凝土結構的抗彎承載力計算中的碳纖維材料折減系數具有重要的混凝土中鋼筋銹蝕是十分普遍的現象,尤其是在沿海地區、工業污染地區鋼筋銹蝕問題更為突出。如今鋼筋銹蝕已被公認為混凝土結構耐久性劣化最主要的原因,不少國家為此遭受了巨大的經濟損失。在對銹蝕鋼筋力學性能和粘結性能展開研究前,本章先對混凝土中鋼筋的腐蝕機理、鋼筋銹蝕的影響因素和鋼筋銹蝕的試驗方法進行全面的探討和研究,并概述了當前混凝土中鋼筋銹蝕的無損檢測方法和鋼筋的防腐技術。借鑒意義。/div>
超早強加固型 2小時強度達到15Mpa,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,止水堵漏快速修補。
CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼筋,建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的施工
1.基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動混凝土的自收縮是指在恒溫絕濕的條件下由于膠凝材料的水化,消耗了水份,引起白干燥而造成的混凝土宏觀體積的減少。這是伴隨著水泥水化反映的化學收縮引起的結果,與外界濕度變化無關。由于當時的混凝土水灰比大,又沒有摻任何礦物摻合料等諸多原因,所以自收縮的量很小。考慮到一般測得的干燥收縮包括了自收縮,因此那以后很長時間里自收縮被忽略了。性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進遷移型阻銹劑是國際上20世紀九十年代才發展起來的阻銹劑品種,是具有更強防護作用的功能性產品,在混凝土中改變了被動防腐阻銹的局面,轉變為主動防護功能作用,在性能上改變和彌補了傳統亞硝酸鹽類無機阻銹劑的功能缺陷,更具有能夠在混凝土中遷移的功能,這種作用為混凝土中鋼筋的保護提供了空間和時間上的有效保證,使阻銹劑具有了類似“智能化"的功能,因此,該類產品一出現,就得到了防腐界的極大關注,成為新一代防腐阻銹的產品。遷移型阻銹劑作為新型鋼筋阻銹劑,在我國工程領域內的研究也僅僅處于起步階段。行灌漿,以確保漿料能充分填充各個角落。3. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
4. 灌漿料的攪拌
圓形箍板(曲面)的局部穩定性較方形箍板(平面)的局部穩定性要好,且內部混凝土的橫向變形使鋼板套筒環向受拉,也有利于鋼板套筒的軸向穩定性。反過來鋼板套筒的橫向約束使內部混凝土具有良好的三向受壓應力狀態,也提高了混凝土的軸壓強度。從鋼板套筒的失穩現象看,最后鋼板只是縱向屈服局部失穩,鋼板套筒充分發揮了軸向抗壓強度。試驗結果比不考慮橫向約束的計算值高出46%,說明了混凝土的二向受壓應力效應明顯。與考慮橫向約束的計算結果比較,試驗值高出計算值10%說明了混凝土內部的整體性好,該加固方法達到了預期的目的。 按產品合格證上推薦的水料比確定加水量,拌碳化反應區的長度及碳化反應區內pH值的變化規律是影響鋼筋破鈍時期銹蝕速度的一個主要因素,其研究對準確預測全國交通基礎設施“十一五”規劃指出,未來我國公路建設將采取“新建”與改造”并舉的方針,路網改造與橋梁加固將是未來公路建設的一大部分。國外統計資料也表明:西方主要發達國家已有建筑物的改造和加固工程投資與新建工程投資之間已經基本持平。鋼筋脫鈍的時間、鋼筋銹蝕的速度以及整個鋼筋混凝土構件的壽命具有一定意義。既然存在碳化反應區,那么處在其中的鋼筋是否會生銹,裂縫寬度和鋼筋銹蝕率呈現明顯的非線性,這說明隨著裂縫寬度的增加,銹蝕率也增加,但銹蝕率的增長速度會放緩,這主要是由于當鋼筋銹蝕脹裂混凝土裂縫達到一定寬度后,隨著鋼筋銹蝕產物的增多,銹蝕產物的堆積將取代混凝土包裹住鋼筋,使得鋼筋氧化過程變得越來越緩慢,但是隨著裂縫寬度的增大,氯離子會侵入鋼筋銹蝕區域周邊(如圖2.22所示),加速這些區域鋼筋的銹蝕。如果硅灰、膨脹劑的影響:微觀研究發現,超細水泥水化物中含有大量的Ca(OH)2,且隨著水化齡期的延長而增加;加入硅灰后Ca(OH)2含量少,且隨水化齡期延長反而減少,主要原因水泥水化產生的Ca(OH)2能很快地被硅灰水泥漿中的活性Si02微粒吸收,并與之發生二次反應,生成水化硅酸鈣。在水化早期生成的鈣礬石使得漿體中AFt生成量增加,給AFt形成空間網絡結構提供了條件,使得水泥石進一步致密。在超細水泥中加入硅灰,硅灰顆粒成粒徑非常小的球形,平均粒徑在0.19m左右,從而能顯著改善水泥漿體的流動性和滲透性,超細水泥、硅灰和膨脹劑共同滲入到基體材料的孔隙中水化生成大量的鈣礬石和C.而鍍鋅鋼筋在混凝土中的電流嗓音的標準偏差和腐蝕電流密度隨循環周期的變化則示。鍍鋅鋼筋的k在前8個周期中(第3周期除外)變化很小,但從第12周期開始顯著增大。這可以解釋為在前8個周期中鍍鋅鋼筋的表面形成一層腐蝕產物膜而使鍍鋅鋼筋鈍化,但是鈍化并不完全,只能部分地減小腐蝕速度。在第8一12周期之間,在鍍鋅層的附近有足要考慮溫度效應中各種因素的影響,顯然很難,通過大量與溫度效應研究分析相關資料搜集與對比,可以知道,其中有一些次要得因素可以略去,這樣使方程就變得簡單了很多,如沿橋縱向得溫差影響。夠的氯離子聚積,從而造成表面鈍化層的破壞和喪失,加速了鋅的腐蝕。這可解釋從第12周期開始‰增大的現象。姨在前3個周期中迅速增大,然后趨向于下降。從第堇2周期開始,舔的數值再次增大。壤的變化反映了腐蝕活性的變化。鍍鋅鋼筋的腐蝕活性先增加,隨后降低,第12周期以后又增大。腐蝕活性的變化對應于鍍鋅層在剛開始時的陽極溶解,隨后腐蝕產物導致的不完全鈍化,以及最后氯離子引起的加速腐蝕。鋅表面從鈍化狀態過渡到活化狀態的時間發生在第8周期和第12周期之間。S.H等,同時C.S.H凝膠的毛刺以及小的針狀鈣礬石生長到基體材料中,使得基體材料與復合砂漿形成一個整體,從而提高了界面的粘結性能。會,就意味著目前采用的酚酞滴定法存在缺陷,因為它只能測出完全碳化區長度。要準確區分尚未完全碳化與完全碳化,應以巖相顯微鏡切片或試樣x射線衍射分析、差熱分析確定。和用水應采用飲用水,水溫以5~40℃為宜,可采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
.灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
.在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
.每次灌漿層厚度不宜超過100mm。
.較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
.灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
.對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
.設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
.國內對于粘鋼加固技術的研究始于上世紀80年,1985年遼寧省建筑科學研究院首次編制了《鋼筋混凝土受彎構件外部粘鋼加固技術規定》,而后,四川省建筑科學研究院、清華大學、西安建筑科技大學、同濟大學等多家科研院所對粘鋼加固的方法、原理進行了更深次的研究,并編制了相應的規范及加固規程。在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
.模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
.灌漿中如出現跑漿現象,應及時處理。
.當設備基礎灌漿量較大時通過對比兩根試驗梁的CFRP片材應變隨荷載的發展曲線,初步明確了非粘貼體外多點錨固預應力碳纖維片材加固中,碳纖維片材與縱向鋼筋及加固梁體有較好的變形協調性能,尤其在到達屈服荷載前,體外預應力加固的變形協調性能與普通粘貼加固相似,預應力施加過程中,可以通過對央具的頂升量來控制CFRP片材的張拉應力(應變),張拉力太小,預應力效果不明顯,而張拉力太大,會導致C鋼筋混凝土結構物的裂縫不可避免,但其危害程度可以控制。大多數情況下,不嚴重的裂縫不會引起結構的破壞,但它會影響結構的正常使用或耐久性,會加速腐蝕,逐漸使混凝土結構使用功能降低。而當混凝土結構出現危害性裂縫后,必須進行修補或加固,以恢復結在《工程結構裂縫控制》中系統地介紹了工程結構中混凝土的收縮及溫度應力理論、大面積混凝土結構裂縫控制的方法,并創造性地提出了“抗”與“放”的設計原則,結合實踐得出了伸縮縫間距及裂縫控制的計算公式。構的整體性或防止漏水。修補方法的選擇不僅受開裂原因和程度的影響,而且還受裂縫所處位置和環境的影響。FRP的剩余變形不足,梁體缺乏延性,甚至引起梁體上緣混凝土開製。本次試驗對Beam-2的CFRP片材跨中張拉應變平均值為2148l,e,張鋼筋必須按要求除銹,鋼筋表明不能有油漬等雜物。拉應力為526Wa,張拉力約為53kN。,應采用機械攪拌方式,以保證灌漿施工。
6、養護
.灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
.冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參泵送混凝土不僅應能改善混凝土的施工性能,對薄壁密筋結構少振搗或不振搗施工,而且應能減少收縮、防止裂縫、提高抗滲性、改善耐久性。但是某些工程表明,泵送混凝土強度不足、凝結異常時有發塑料波紋管在運輸和存放過程中應注意保護。運輸時宜用集裝箱或平板車廂,且不得卷盤或彎折。堆放時場地應平整、清潔,最好存放在倉庫內,并不得與金屬等硬物混雜、磕碰,無存放條件必須在戶外堆放時,應進行覆蓋,不得長時間在烈日下暴曬。生,特別是裂縫普遍存在,在一定程度上影響結構的抗滲性和耐久性,值得引起足夠的重視。考。
2.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
3.灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西撫州C60灌漿料直銷|江西灌漿料。