1.灌漿前,日平均溫度不應低于5℃,灌漿完畢后裸露部分應及時噴灑養護劑或覆蓋塑料薄膜,加蓋濕草袋保持濕潤。采用塑料薄膜覆蓋時,水泥基灌漿材料的裸露表面應覆蓋嚴密,保持塑料薄膜內有凝結水,灌漿料表面不便澆水,可噴灑養護劑。
3.當采用快凝快硬型水泥基灌漿材料時,養護措施應根據產品要求的方法執行。<
施工質量易保證:由于碳纖維片材是柔性的,即使被加固的結構表面不是非常平整也基本可以達到100%的有效粘貼率。耐疲勞性能好:對經常承受往復荷載、移動荷載作用的結構加固后要考慮結構的抗疲勞性能。碳纖維片材加固混凝土結構經過一定次數的循環荷載,其強度及延性指標并沒有顯示出有所降低,而普通混凝土經過同樣的循環荷載后,其強度和延性指標都會有不同程度的降低。因此,隨著相關規范的頒布,加固技術的不斷完善,碳纖維片材作為一種新興的加為了解決規律性裂縫,首先應選擇合理的計算模型,我們認為“地基上的長墻”作為計算模型是比較符合實際的。由于影響工程裂縫的因素是很多的,并且它們是很復雜地相互作用著。任何理論都不可能精確的考慮到所有起作用的因素,抓住主要因素。在基本模型假定的基礎上,發現引起裂縫各主要因素之間的關系,尋求其中規律性問題,其精確程度是能達到解對未切割的鋼絞線,根據工作夾片在張拉時的刻痕可以大體量測出實際伸長值,也可以作為第二個指 標進行確認應力值是否達到。但相對麗言應以應力檢驗為準,因為鋼絞線的張拉是以應力值和伸長值作為雙控指標,而伸長值有±6%的允許偏差。決工程問題之目的。當然.在今后的理論上還在不斷的改進和進一步精確化。固材料,將在結構加固工程中迅速得到推廣與應用。/div>
③冬期養護
1.冬期施工,工程對強度增長無特殊要求時,灌漿完畢后裸露部分應及時覆蓋塑料薄膜并加蓋保溫材料。起始養護溫度不應低于5℃。在負溫條件養護時不得澆水。
2.拆模后水泥基灌漿材料表面溫度與環境溫度之差大于20℃,應采用保溫材料覆蓋保護。
3.如環境溫度低于水泥基灌漿材料要求的最低施工溫度或需要加快強度增長時,可采用人工加熱養護方式;養護措施應符合國家現行標準《建筑工程冬期施工規程》JGJ104當受彎構件粘貼的多層纖維織物允許截斷時,相鄰兩層纖維織物宜按內短外長的原則分層截斷;外層纖維織物的截斷點宜越過內層截斷點200mm以上,并應在截斷點加設U形箍。當采用環形箍、U形箍或環向圍束加固正方形和矩形截面構件時,其截面棱角礦粉、磷渣、I級粉煤灰等礦物摻合料、纖維摻加物及外加劑等對混凝土抗壓強度和抗拉強度的影響并不相同,不同的齡期階段影響也不一樣;摻加礦粉、磷渣、I級粉煤灰使混凝土3天抗壓強度和劈裂抗拉強度均降低,對混凝土早期裂縫防治不利;28天抗拉強度,這三組與基準組沒有明顯差別,但28天抗壓強度,多比基準組有降低。應在粘貼前通過打磨加以圓化:梁的圓化半徑r,對碳纖維阻銹劑具有以下優點:它是一種復合產品,滲透能力和對鋼筋的吸附力極強在一般大氣環境條件下,鋼筋混凝土耐久性預測模型主要考慮混凝土碳化和鋼筋自然銹蝕所需時間。然而對地鐵隧道襯砌結構處于雜散電流腐蝕情況下的鋼筋混凝土結構,因特殊的雜散電流存在,其耐久性計算并非遵循先混凝土碳化后鋼筋腐蝕的一般情況。這樣處于雜散電流腐蝕情況下隧道襯砌結構耐久性計算主要就是計算雜散電流腐蝕鋼筋至極限狀態所需時間。,它包含了多種不同類型的氨基醇與特種無機組份,在鋼筋表面混凝土溫度破壞機理主要是:混凝土中由于水混砂業與骨料熱膨脹系數的不同,在升溫過程中溫度荷載作用下水混砂業與骨料所形成的界面首先產生損方,并隨溫度增加而發展,國此形成界面裂縫,當溫差繼續增加達到某一數值后,界面裂縫便向水混砂裝中延伸。在以后的降溫過程中界面裂教與水大體積混凝士的施工技術,涉及到經濟、技術、設計、管理、施工等諸多方面。要想保證大體積混凝土的施工質量,需要建設單位、設計單位、施工單位、材料供應商等的綜合管理真空壓漿優點: 由于孔道內和壓漿泵之間的正負壓力差,孔道中原有的空氣和水被清除。同時,混夾在水泥漿中的氣泡和多余的自由水被排出,大大提高孔道內漿體的飽滿和密實度。漿體中的微沫及稀漿在真空負壓下率先進入負壓容器,待稠漿流出后,孔道中漿的稠度即能保持一致,使漿體密實性和強度得到保證。、科學組織,合理女排,嚴格按規定要求執行。通過建筑工程大體積混凝士施工技術的研究,査出影響大體積混疑土容易出現的質量通病為結構裂縫;通過對大體積混凝土結構裂縫的分析,找出導致裂縫的主要原因是由于水泥水化熱高使混凝溫度變化產生的溫度應力大于混凝土的抗拉強度而造成大體積混凝土產生裂縫。混砂裝中的徴裂紋繼續發展,以致發展成宏觀裂縫,井可能導致混凝十:結構發生斷裂破壞,界面是混擬上中最薄弱的環節,溫度損傷首先在界面上出現徴裂縫,然后向水混砂裝中延伸,并可能發展成黃通裂縫。形成了一層厚達10~100nm的保護膜,這些組份共同作用,使這層保護膜的完整性極高。它是一種活性阻銹劑,可同時吸附到鋼筋的陰、陽兩極進行保護,因此保護效果極佳。在陽極,保護膜阻止了鐵離子的流失,在陰極,保護膜形成了對氧的屏障。另外,它還可將鋼筋表面已有的氯離子置換出來。不應小于20mm;對玻璃纖維不應小于15mm,柱的圓化半徑,對碳纖維不應小于25mm;對玻璃纖維不應小于20mm。的有關規定。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參考。
2.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
3.灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 國內甚至有些箱梁橋由于施工過程中即已嚴重開裂而導致其投入運營前就不得不進行大規模的維修、加固,造成了嚴重的經濟損失和惡劣的社會影響。,通過大量的工程實例不難發現,隨著橋梁跨度的不斷增大,預應力混凝土橋梁的噸位不斷在增加,形成預應力錨索和相應的預應力管道的數量也在增加。。
★灌漿料的特點
(1) 高韌性 可化解由動設備傳遞來的可能使水泥基灌漿層爆裂的動荷載。(2) 灌漿料的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替、振動受壓的惡劣物理工況下長期使用無塑性變形。
CFRP片材體外預應力加固相對于CFRP片材普通粘貼加固的優越性。并驗證這一CFR混凝土有裂縫是絕對的,無裂縫是相對的。結構物的裂縫是不可避免的,要保證混凝土構筑物不出現裂縫可以說是不可能的,要想控制混凝土構筑物不開製也是很難的,而只能把裂縫寬度控制在一個合理的范國內。我國的混凝土結構設計規范(GBJl0-89),在不同環境、不同介質情況下的筋混凝土結構的最大允許裂縫寬度就有明確的規定:室內正常環境下的一般構件為03mm,露天或室內高濕度環境下為02mm。國內外有關規范對裂縫寬度都有相應的規定,一般部是根據結構工作條件和鋼筋種類而定。P預應力加固技術的可行性。試驗通過制作相同的鋼筋混凝土加固構件,給予相等的CFRP加固量,來考察主梁裂縫是混凝土斜拉橋的主要病害之一,對橋梁結構的耐久性和營運安全性構成了很大的威脅。由于混凝土斜拉橋構造和受力的復雜性,其裂縫的分布形式和成因更為復雜,目前國內外相關文獻還比較少。箱梁頂板縱向裂縫、橫隔梁裂縫和跨中無索區的底板、腹板裂縫是混凝土斜拉橋主梁最常見的裂縫形式。其中,頂板縱向裂縫和橫隔梁裂縫主要是由豎向溫度梯度效應引起的,而跨中無索區的底板和腹板裂縫是主梁在各因素綜合作用下的結果。不同加固方式產生的加固效果。最終由承載力、撓度、極限應變、變形性能等試驗結果來反映。
(4) 無收縮 確保灌漿層最終成型后與承載面完全接觸。
(5) 灌漿料的高強早強 具有優于水泥基材料的抗壓、粘結等力學性能,更高的早期強度。
★灌漿料的安全性
采用無毒無揮發配方,對環境和人體友好,但應避免與皮膚長期接觸,使用時應佩帶必要防護并保持環境通風,皮膚沾染應及時清洗,如有誤食口服。
★灌漿料的適用范圍與參數
CGM-3
超細加固型 超細骨料,適用于灌漿層厚度5mm<δ<30mm的設備基礎及鋼結構柱腳板二次灌漿。混凝土梁柱加固角鋼與混凝土之間縫隙灌漿。
CGM-2
豆石加固型 含5~10mm大骨料,適用于灌漿層大體積混凝土配合比的原則是在滿足強度要求的同時,盡量減少水泥用量,提高混凝土的流動性,改善混凝土的和易性。尤其是對混凝土和易性中的流動性、粘聚性和保水性,要反復進行試驗,以選出比較合適的配合比。厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補1985年,李秉實、黃孝衡等對華北地區使用l~57年的66座海港鋼筋混凝土碼頭進行的調研結果表明,50年代以前修建的,大部分梁、板均已經嚴重破壞;60年代修建的,一般尚且基本完好;70年代修建的,由于施工質量差或使用不當,也遭到不同程度的破壞。1988年,許冠紹等對40座用于淡水的鋼筋混凝土水閘進行的調研中發現,鋼筋銹蝕導致上部混凝土結構破壞的占62%,其中破壞嚴重的占22%。強加固(修補厚度≥60mm)。
CGM-4
超早強加固型 2小時強度達到15Mpa,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,止水堵漏快速修補。
CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼需要對瞿家段橋在加固改造工作的不同階段開展科學的、詳細的荷載試驗研究,從而深入徹底的探索新型加固技術與傳統改造方法對舊橋受力性能的提升效果,為預應力碳纖維加固技術的進一步完善及推廣積累寶貴的基礎數據。有鑒于此,本文在瞿家段加固改造工作開始之前(原橋結構狀況未發生任何改變),以及該橋加固改造工作完成之后(預應力碳纖維板加固、橋面改造)分別進行了近似同條件的荷載試驗研究(不同階段試驗車載軸重略有差別),以期通過基本相同荷載效應下的結構反應對比來分析橋梁力學性能的變化和改善。筋,超厚墻體混凝土結構進行蓄水養護亦是一種較好的方法,我國一些工程曽采用,但對有工期要求建筑工程不適用。混凝土終凝后,在其表面蓄存一定深度的水。由于水的導熱系數為0.58w/m·K,具有一一定的隔熱保溫效果,這樣可延緩混凝土內部水化熱的降溫速率,縮小混凝土中心和混凝土表面的溫差值,從而可控制混凝土的裂縫開展。建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的包裝與儲存
每袋凈重50kg,采用紙塑復合袋包裝;
運輸和儲存過程避免將包裝袋損壞,并嚴格橋梁結構的裂縫最終都是因變形引混凝土具有熱脹冷縮性質,當外部環境或結構內部溫度發試驗結果表明,粘鋼能顯著提高鋼筋混凝一梁的抗彎性能。并且隨著粘鋼面積的增大而提高。粘鋼加固梁的撓度變化大致分為三個階段:第一階段,在加荷初期,混凝土開裂之前,鋼板與混凝土共同工作,隨著彎矩的增加,撓度曲線大致呈線性變化。第二階段,在拉區混凝土開裂后,構件的剛度有所降低,彎矩一撓度曲線出現第一個轉折點。由于開裂截面拉區混凝土退出工作,所承擔的拉力全部由鋼板與鋼筋承擔。隨著荷載的繼續增大,此時開裂截面處的鋼筋應變有明顯的增大(突變)。當鋼板及鋼筋應力到達屈服時,梁的受力性能將發生質的變化,彎矩一撓度曲線出現明顯的轉折,使梁進入第三階段——屈服階段。生變化,混凝土將發生變形,若變形遭到約束,則在結構內認為大多數FRP加固混凝土結構是由該極限狀態控制。因為作為高強材料的FRP,在加固中截面面積往往很小,對結構的剛度貢獻很小。而承載力極限狀態則是根據不同的碳壞模式確定,并應使加固設計具甲、乙兩組分應分開存放于陰涼(5-35°C)、干燥的庫房內,且儲存期不超過12個月。有較好的延性碳壞模式,避免混凝土壓碎、FRP拉斷和剝離等脆性碳壞。將產生應力,當應力超過混凝土抗拉強度時即產生溫度裂縫。在某些大跨經橋梁中,溫度應力可以達到甚至超出活載應力。溫度裂縫區別其他裂縫最主要特征時將隨溫度變化而擴張或合攏。起的,要研究裂縫首先應從組成材料的變形性能開始。混凝土的強度和變形問題涉及到混凝土的內部微裂縫及破壞機理。現代技術已發現,在混凝土結硬的過程中,由于集料的約束,水泥膠結料的體積改變時不均勻的,這使得在水泥膠結料于集料之間的結界面上,在施加荷載以前就產生了不均勻拉應力。n43當這影響混凝土中鋼筋銹蝕的因素很多,理論上說凡是影響鋼筋電化學腐蝕反應過程的因素都會對鋼筋的銹蝕產生影響,這些因素主要有:Cl濃度的影響。進入混凝土中Cl只有一部分溶解于孔隙液中成為游離的Cl大體積混凝土的裂縫問題在國外研究較早。從1900年到1930年,建成的混凝土壩施工中,已開始對大體積混凝土防裂措施進行研究。1915年,美國在愛德荷州建成了世界上第一座高于100m的混凝土壩(壩高107m),即箭石壩(ArrowRock)。在施工中,開始用坍落度測稠度、塑制試件測定抗壓強度,但對加水量仍無嚴格控制,拌制的混凝土仍很稀。由于施工技術上的缺陷,那時的混凝土壩出現了嚴重的裂縫。1930年后,開始注意到大壩混凝土的裂縫問題。到1933年,美國開始修建世界上第一座高于200m的混凝土壩一胡佛壩(221m高),對大體積混凝土進行了全面的研究。第一次采取溫控制措施,主要包括橫縫分布均為15m,混凝土的水泥用量為223kg/m3,采用低熟水泥,澆筑層厚1.5m并限制間歇期、預埋冷卻水管等。結果表明這些溫控防裂措施是比較成功的。美國在對水工大體積混凝土溫控裂縫方面,在20世紀60年代初已形成了一套比較定型的設計、施工模式。前蘇聯在1977年修建了托克托古爾電站,也形成了一套行之有效的大體積混凝土溫控防製措施,即托克托古爾法。,另一部分則被吸附固化。鋼筋表面孔隙液中游離Cl濃度越高,則對鈍化膜的破壞作用越大,鋼筋的活性越大,銹蝕速度也越大。由于鋼筋的活性還受pH值(OH濃度)的影響,當OH濃度高時,鈍化膜穩定性好,破壞鈍化膜所需的Cl濃度越高。因此,用Cl/OH來表征鋼筋的活性比用Cl濃度更合理。Cl/OH具有臨界值,Cl/OH小于這個臨界值時銹蝕不會發生。些拉應力較大時,就在相應交界面上形成微細裂紋。通常稱為界面裂縫或粘結裂縫,它是在受到荷載以后就產生的混凝土體內裂縫,故又稱為初始裂縫。可以把混凝土看成是集料和水泥膠結料組成。由實驗結果知道,石料的應力應變關系是線性的,其破壞的強度遠比混凝土高;水泥膠結料的的應力應變關系基本上也是線性的,其強度也比混凝土高;但由于兩者所組成的混凝土卻具有明顯的非線性性質,且其強度也較低,這說明混凝土的非線性力學特征和破壞機理與其組成物之間的交界面特性有很大關系,因此混凝土體內的交界面非常重要。防潮,避免陽光直射;
保質期6個月。
★灌漿料的施工說在受拉鋼筋中間位置貼應變片處,用砂輪打磨鋼筋,打磨出適合貼應變片的小平面,用砂紙打磨平整,再用脫脂棉蘸丙酮將貼片部位擦洗干凈,用502膠將lmmX2mm的鋼筋應變片和接線端粘貼在受拉鋼筋中間位置上。在澆筑混凝土試驗梁之前,把電線和應變片連接焊好,用萬用表量測電阻在120±0.5Q范圍內為合格。用哥倆好膠將應變片及其和電線的焊接端糊好,用紗布包裹兩圈,再在紗布外面抹上哥倆好膠將紗布包嚴以防潮。再次量測應變片電阻,合格即可。明
首先加入適量的水清洗設備,同時起1997年5月,華東預應力中心召開的大面積預應力混凝土框架結構設計和施工研討會上,呂志濤院士認為:整澆混凝土樓面結構的長度與寬度超過規范不設縫的限值要求即可為大面積混凝土結構。在對現有工程資料及相關文獻歸納總結后,大面積混凝土結構通常有以下固有的特點:混凝土是脆性材料,抗拉強度只有抗壓強度的十分之.一左右;拉伸變形也很小,短期極限拉伸應變只有(O.6.1.0)×10-4,約相當于溫度降低一10攝氏度的變形;長期加載時的極限拉伸變形也只有(1.2.2.0對采用預應力碳纖維板加固的受彎構件的彎曲性能進行了試驗研究。試件尺寸分為兩種,長度分別為1000mm與4500mm,截面尺寸分別為100x150mm與145×230mm,加載方式采取四點彎曲加載。長1000mm的試件采用截面為0.8×67mm的碳纖維板進行加固,長4500mm的試件采用截面為1.3×90mm的碳纖維板進行加固。兩種碳纖維板材的抗拉強度和彈性模量分別為:1414MPa與111GPa、1284MPa與115GPa。初始應力水平分別為碳纖維抗拉強度的25%,40%及50%。非預應力碳纖維加固的對比試件的破壞模式是碳纖維的剝離破壞:預應力加固試件的破壞模式大多是碳纖維板的拉斷。作者報告稱預應力降低了截面內中和軸的位置,截面大部分混凝土受壓,因此提高了混凝土的利用效率。作者發現預應力碳纖維板可以減小構件的整體變形,從而使得碳纖維更有效率,另外也較非預應力碳纖維承擔更多的荷載。)x104。②結構形式上呈現出超長、平面尺寸大的特點,但樓面板或屋面板厚度較小,一般不+超過200ram。③大面積混凝土通常是暴露在外面的,表面有空氣接觸,四季的氣溫變化也會對混凝土產生大的影響。混凝土澆筑后,由于內外溫差以及季節溫差的作用,大面積混凝土結構內將產生較為可觀的溫.度應力,使樓面或屋面產生較大的伸縮變形。④大面積混凝土結構的裂縫主要由結構變形約束溫(度、收縮、不均勻沉降)與外荷載共同作用引起。有時溫度應力和收縮應力是大面積混凝土結構裂縫出現的主要因素。到潤濕桶壁的作用。然后加水至制漿機81kg刻度線位置,開啟攪拌泵和循環泵,勻速加入300kg(12包)灌漿料,加料過程制漿機應處于工作狀態,投料完畢后攪拌3~5min,將漿體導入儲漿桶攪拌直至壓漿完畢。
★灌漿料的參考用量
灌漿料有不同的型號,比如CGM灌漿料,DGM,高強無收縮灌漿料等等,這些都是根據不同的建筑研究院的標準來定的,不代表產品質量好壞,具體使用情況需試驗。
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
正是因為灌漿料的強度高,遠遠超過水泥能達到的強度,并且改變了水泥在固化時收縮的特點,所以稱為高強無收縮灌漿料!
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。南昌縣高強灌漿料批發|江西灌漿料廠家。