|
|
★灌漿料的安全性
采用無毒無揮發配方,對環境和人體友好,但應避免與皮膚長期接觸,使用時應佩帶必要防護并保持環境通風,皮膚沾染應及時清洗,如壓漿時的檢查: 壓漿應緩慢、均勻,不得中斷,壓漿應使用活塞式壓漿泵,壓漿的最大壓力宜控制在0.5~0.7MPa,當孔道較長時,最大壓力宜為1Mpa;壓漿應從最低點進入,最高點排氣和泌水,壓漿宜先壓注下層孔道;采用純水泥漿時,孔道應兩端先后各壓漿一次,間隔時間一般為30~45min;鄰近孔道壓漿要連續進行,一次完成;壓漿應達到另一端出漿飽和,并且排氣孔大體積混無土與普通混凝土結構相比,具有結構厚,體積大,鋼筋密,混凝士數量多,工程條件復雜和施工技術要求高的特點。除了必須滿足普碳纖維增強塑料受彎加固碳壞形態分為5種:超筋碳壞,即受拉鋼筋達到屈服前受壓區混擬土壓壞;適筋碳壞I,即鋼筋屈服后,受壓區溫凝土壓壞,而此時碳纖維增強塑料尚未達到極限拉應變;適筋碳壞,即鋼筋屈服后,碳纖維增強塑料達到極限拉應變,而此時受壓區混凝土尚未壓壞,保護層溫凝土剪切受拉剝高碳壞,碳纖維增強塑料與溫凝土基層問粘結剝離碳壞。通混凝土的強度、剛度和整體性及耐久性等要求外,主要就是如何控制溫度變形裂鎚的發生和開展。由子大體積混凝士工程條件比較復雜,施工條件各異,混凝土原材料品質的差異較大,因此空制溫度變形裂縫就不是單純的結構理論同題,而是涉及到結構計算、構造設計、材料組成和其物理力學指標、施工工藝等方面的練合技術問題。但迄今同內外一些有關的研究論文和學術報-角一都只零散地發表在期雜志上,井.目_土題性同題討論較多,綜合性資料及論著則很少。排出的與壓注的漿液有相同的稠度;壓漿時及壓漿后的48小時內,混凝土溫度不得低于5℃,否則應有保溫措施,當氣溫高于35℃時,應采取降溫措施或在夜間壓粘鋼加固梁的極限彎矩 都有較大程度的提高,粘鋼寬厚比值和位置對梁的極限承載力有明顯影響。表明梁由于舊建筑物的工程事故不斷發生,各經濟發達國家逐新把建設的重點轉移到l日建筑物的維修、改造和加固方面。英國1978年用于投資改造的費用是1965年的3.76倍,1980年舊建筑物維修改造工程占英國建筑工程總量的三分之二;瑞典1983年用于維修改造的投資占建筑業總投資的50%。底粘鋼板加固的承載效率比梁側高。隨著鋼板厚度及粘鋼面積的增加,極限彎矩也增加,但并不成線性關系,當粘鋼面積超過梁的界限粘鋼面積時,梁的破壞呈現脆性性質。漿。有誤食口服,請立刻飲水催吐并延醫治療。
★灌漿料的<粘鋼加固技術的特點:施工簡便、快捷、基本不增加被加固構件斷面尺寸和重量。鋼板端部錨固非你想在兩根未預留錨筋的柱子上,澆筑一根新的混凝土梁嗎?這在以前是不可想象的事,但現在已變成了現實,“植筋”技術可以完成這一任務。常重要,處儲梁期過長,從正彎矩張拉結束到負彎矩張拉時間間隔太長,甚至超過60天。常常引起橋面鋪裝層開裂,此后帶來橋面水毀等質量問題。措施:注意控制張拉時混凝土彈性通過對比試驗,對采用U型箍,X型交又箍及不采用任何外加錨固的梁、板進行分析。考察不同錨固方式對抵抗碳纖維早期事碳壞的數果。通過試驗,對梁中間製鑓穿過交又箍條在梁:l則錨固區的不同位置,分析x型交又箍條錨固在不同工況下的效果。通過分析結果總結出一套減少碳纖維早期剝離碳壞的方法,對工程實踐提出建議。模量。嚴格控制箱梁混凝土施工配合比。及時張拉、出坑,減少存梁期,針孔以及表面損傷對環氧涂層鋼筋在含氯混凝土中腐蝕行為的影響,研究結果表明,環氧涂層鋼筋表面損傷的影響比針孔更為重要。Erdo謄du等人川研究了表面損傷為1%和2%以及完好的環氧涂層鋼筋在含氯離子環境中的腐蝕行為。結果表明,經過2年的浸泡,完好的環氧涂層鋼筋在混凝土結構中表現出良好的耐腐蝕性。然而存在1%和2%表面損傷的環氧涂層鋼筋雖然發生了腐蝕,但并沒有導致混凝土保護層的破裂和剝落。鋼筋表面環氧涂層凈漿體的強度總是高于復合物的強度,I組分的膠體強度大于其他所有配比的強度;隨著砂率的增加,膠體的立方體抗壓強度逐漸下降;通過試驗結果表明,在攪拌過程中,過大的砂率會影響拌合物的和易性和流動性。的缺陷對于環氧涂層防腐蝕保護作用的影響是十分重要的。因此,研究環氧涂層發生一定的機械損傷時,環氧涂層鋼筋在混凝土中的腐蝕行為及本質機理是非常必要的腐蝕行為,以及環氧涂層的表面損傷對環氧涂層鋼筋的腐蝕行為的影響,并結合其他腐蝕電化學測量,對環氧涂層鋼筋的腐蝕機理進行討論。及時安裝,并進行濕接頭、濕接縫施工。理不當易出現撕脫現象,屬脆性破壞。加固鋼板宜在2~6mm之間,若此厚度不能滿足設計要求,可用濕式外包鋼法或粘碳纖維法。基層溫度在5℃以下時使用粘鋼法需輔以升溫措施,加快固化。若加固梁柱鋼板較厚時,建議采用外包鋼法。此方法在增層及抗震加固中經常使用。當原構件處于高應力狀態時,宜采用卸荷方案,消除新舊材料的應變不同步。框架節點負彎矩段構造較難處理,建議采用局部調幅法,盡量優先粘貼梁底。/SPAN>適用范圍與參數
CGM-3
超細加固型 超細骨料,適用于灌漿層厚度5mm<δ<30mm的設備基礎及鋼結構柱腳板二次灌漿。在大體積混凝土結構中,溫度應力的發展可以分為三個階段。早期應力。自澆筑混凝土開始,至水泥受剪構件外貼鋼板的應變隨荷的變化情況,由于受裂縫位置及數量等影響,鋼板應變的發展具有一定的隨機性,從鋼板最大應變的變化可以發現,在加荷初期試件梁并未出現裂縫,鋼板的應變為零,隨著荷載的增大,梁出現裂縫,鋼板出現拉應變,隨著荷載的繼續增大,鋼板的拉應變也逐漸增大,但隨后由于錨固端的枯結滑移或局部錨固破壞,鋼板的應變出現下降甚至退出工作,鋼板并未充分發揮作用。構件破壞時,外貼抗剪鋼片都沒有達到屈服強度。這說明對于抗剪加匿來說端頭錨固同樣重要,必要時可采用附加錨固措施以保證抗剪加固的效果。放熱作用基本結束時止,一般約一個月左右。這個階段有兩個特點:一是因水泥水化作用而放出大量水化熱,引起溫度場的急劇變化:二是混凝土彈性模量隨著時間而急劇變化。中期應力。自水泥放熱作用基本結束時至混凝土冷卻到最終穩定溫度時,這個時期中溫度應常溫固化、硬化過程收縮小。力時由于混凝土的冷卻及外界溫度變化所引起的,這些應力與早期產生的溫度應力相疊加。在此期問,混凝土彈性模量還有一些變化,但變化幅度較小。晩期應力。混凝土完全冷卻以后的運行時期,溫度應力主要是有外界氣溫的變化所引起的,這些應力與早期和中期的殘余應力相互疊加形成混凝土晩期應力。混凝土梁柱加固角鋼與混凝土之間縫隙灌漿。
CGM-2
豆石加固型 含5~10mm大骨料,適用于灌漿層厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁、板、柱。由于粱底碳纖維布延伸到了支座,另因此電化學檢測方法得到了很大的重視和發展,目前在實驗室已成功地用于檢測混凝土試樣中鋼筋的銹蝕狀況和瞬時銹蝕速度,并已開始嘗試用于現場檢測。電化學方法是混凝土中鋼筋銹蝕無損檢測方法的發展方向。目前鋼筋銹蝕檢測的電化學方法主要有自然電位法、交流阻抗譜法和線性極化法等,此外恒電量法、電化噪聲法、混凝土電阻法、諧波法等也在發展中,但用于現場檢測尚不多。外試驗粱在剪彎段配置了較多的箍筋,兩試驗粱均未發生端部剝離破壞.只是ti3梁在鋼筋屈服后很快破壞,而且破壞較為突然;與B13粱相比,B14粱的極限荷載稍有提高,跨中撓度稍有下降,這可能是由于附加錨固措旌限制了粱底粘結裂縫的旋展,從而提高了粱的承載力和剛度。且B14梁破壞時裂縫數目更多,碳纖維逐條被拉斷,比B13粱表現出更好的延性破壞的特征。可見,采用U型箍作為附加錨固措施,對防止碳纖維出現端部剝離、提高承載力、提高延性等方面都起到了積極的作用;對于配箍率較低的梁其作用將更加明顯。因此,粘貼碳纖維布加固時采用U型箍作為附加錨固措施是十分必要的。、基礎和地坪的補強加固(修補厚度≥60mm)。
CGM-4
超早強加固型 2小時強度達到15Mpa,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,走行軌電阻較大時,回流電流在其上流過時產生的電壓降也大,使鋼軌對地的電位差也增大,從而增加了泄漏的雜散電流,為此必須設法降低走行軌的電阻。為降低走行軌電阻值,減少雜散電流腐蝕,在防護設計中選用電阻率低的材料,增大鋼軌橫截面積,將短鋼軌焊接成長鋼軌,其接頭之間的電阻值應低于長為5m的回流軌的電阻值。美國波特蘭輕軌系統采取的辦法是使用規格為54姆/聊的工字鋼軌,從而增大了其橫截面積,而且使用了連續焊接的鋼軌,從根本上消除了鋼軌接頭引起的縱向高電阻率。止水堵漏快速修補。
<認為界面粘結失效引發的碳壞將導致碳纖維無法達到預期的極限應變,因此,需要嚴格控制材料質量與施工質量。,,但本文同時也存在一些不足之處,所對增大截面法加固軸心受壓RC構件的可靠度進行研究,結合當前實施的混凝土加固規范所含可靠度水平,對加固后構件的可靠度計算方法進行優化。我國國家基礎研究重大項目(攀登計劃)中的重大土木與水利工程安全性與耐久性的基礎研究》引用有限元理論,建立混凝土一粘結劑一加固材料的受力模型,分析其應力應變特性,目前,理論上對混凝土的收縮機理已經達成了一定的共識,在原理上對于確定組成的混凝土,在考慮環境邊界條件的前提下,只要能夠確.定混凝土內部任一時間內應力場、溫度場、濕度場和混凝土孔隙的分布規律,即可利用擴散理論、毛細管張力計算公式、熱力學氣液平衡原理、材料彈性力學基本公式,采用有限元方法建立基于混凝土收縮微觀機理的材料學估算公式。但一方面這種公式將極其復雜,包含大量的參數;另一方面,這種材料科學估算公式仍不能精確表征混凝土組成材料的所有技術特性,無法滿足工程實際應用的要求。因此,迄今為止,世界各國在鋼筋混凝土結構設計規范中采Z用的許多干燥收縮估算公式,都是建立在實驗基礎和擴散理論上的半經驗公式。針對不同的加固方案,分析加固后結構構件的可靠度,分別給出計算模型和計算公式,并利用分項系數法與可靠度校準等方法,對當前施行的規范進行校核,對于完善建筑結構的可靠度理論具有重要的指導作用。采用植筋技術對混凝土結構進行加固改造時,原構件的混凝土強度等級應按現場檢測結果確定。得的結論難免具有一定的局限性。例如,由于試驗早期強度偏低,這是因為粉煤灰的二次水化反映一般在混凝土澆筑14d后才開始進行,在溫度較低時發生二次反映所需要的時間更長;加上由于粉煤灰取代了部分水泥,降低了混凝土中水泥的濃度,也必然降低混凝土的早期強度,同時延長了混凝土的凝結時間。因此,在確定粉煤灰的摻量時,既要保證相關的技術指標符合要求,同時還要滿足施工的需要。試驗結果表明,這些弊端可以通過采用減水劑與改性劑雙摻的方法加以解決。隨著粉煤灰含量的增加,混凝土的彈性模量有一定的降低,但彈性模量/強度的比還有一定的提高,這表明在強度接近時,粉煤灰混凝土的彈性模量要高于普通混凝土。隨著粉煤灰含量的增加混凝土中的堿性下降易發生碳化。經費的限制,試驗梁的數目較少,導致試驗數據缺乏統眾所周知,鋼筋混凝土結構已成為世界上應用最為廣泛的結構形式,鋼筋混凝土結構本世紀最常用的結構形式之一。我國每年耗費在混凝土結構上的費用為2000億元以上。人們認為鋼筋混凝土結構是由最為耐久的混凝土材料澆筑而成,雖然鋼筋易腐蝕,但有混凝土保護層,鋼筋也不會發生銹蝕,因此,對鋼筋混凝土結構的使用壽命期望也是很高的,從而忽略了鋼筋混凝土結構的耐久性問題,對鋼筋混凝土結構耐久性的研究相對滯后。計性。而且,未能對不同配筋率、不同混凝土強度等級、二次受力的梁的加固效果進行比較。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼筋,建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參考。
2.包裝規格:50kg/袋,在80年代對大面積混凝土的性能和溫度進行了分析,配合工程實例討論了溫度應力的計算,從原材料預冷卻、混凝土養護時溫度控制、混凝土測溫技術和設計施工中防止裂縫的技術等方面提出了大面積混凝土的裂縫控制措施。存放同濟大學的熊學玉等通過植筋的拉拔試驗研究了植筋的粘結性能,得出了植筋鋼筋抗拉強度、植筋破壞形態及鋼筋植筋深度對破壞形態的影響;吳進等對植筋用粘結劑長期負荷性能通過試驗進行了檢測和評估,認為植筋鋼筋在長期荷載作用下不會發生破壞;清華大學的閻鋒等通過在鋼筋混凝土基材上植筋的拉拔試驗研究,得到以下結論:①鋼筋混凝土基材與素混凝土基材上的化學植筋在傳力機理和破壞形式上存在明顯的不同,不宜將素混凝土上的化學植筋結果用在鋼筋混凝土上。②在靜荷載作用下,植筋錨固段鋼筋應力從內向外隨植筋深度減小,鋼筋應力逐步增大,粘結剪應力的最大值出現在鋼筋進入屈服時。③不同的植筋粘結劑對施工要求各有不同,故施工中應注意施工方法。在通風干燥對梁類構件,當Cm≤1.4,配筋特征值Cs≤0,l5時積空f維的拉應變能達到0.01的水平。由上述曲線還可以看到,當配筋特征值較小時,承載能力極限狀態下破纖維片材的拉應變可以達到極高的應變水平,f'必-1頁運守的原則是,用于承載能力計算的破纖維片材拉應變取值不能超過0.0l的允許應變,否則承載力可靠度不能保證。處并防止陽光直射。
3.灌漿料的保質期為6墻體上冷縫的形成時問一般在混凝土終凝前后.因此在拆模時就可發現由于衙后兩批混凝土澆筑問隔時間太橋梁粘鋼加固設計應按下列原則進行承載力驗算:結構的計算應根據加固后結構的實際應力情況和實際的邊界條件進行;結構的計算截面積,保留的構件采用基于檢測結果的計算截面積,新增構件采用實際有效截面積,并考慮結構在加固后的實際受力程度、加固部分的應變滯后特點以及加固部分與原結構協同工作的程度;加固后使結構恒載增大時,應對被加固的相關結構及基礎進行驗算。長,前批澆筑的混凝土已經初凝,導致兩批泥凝土在接縫處粘接不好而形成的裂縫;裂縫的出現部位一般在前、后兩批澆筑的混凝土之間:裂縫的形態一般呈線形,走向隨兩層混凝土的接觸線,一般為上凸或下凹的曲線;裂縫的寬度一般在03--04mm問,裂縫9年期銹蝕鋼筋混凝土板的承載力隨銹蝕率增大壓漿工藝要求:在實際施工過程中,為保證壓漿工作的順利及壓漿密實,應做好六方面的工作:技術人員和實際操作人員思想上高度重視;工前必須進行技術交底;管道保持清潔、通暢;波紋管保持密封,無破損、異物堵塞等現象;水泥漿嚴格按設計要求配置;加強壓漿設備的維修保養,確保設備完好率。出現較大的損失,根據試驗結果在現行規范的基礎上提出了這一齡期下不同銹蝕鋼筋混凝土板承載力計算公式。對比分析表明,板承載力隨齡期增大而非線性下降,根據規律提出了板承載力預測模型,預測未來四年內承載力降低為原承載力的53%、42%、30%、17%。長度一般有2—7m,墻上冷縫的形態見圖3.2。從圈可看出冷縫并不是真正意義上的縫.只是由于兩批混凝土在接縫姓粘接不好而形成的痕跡,粘接不好表現為接縫處沒有漿體露出粗骨科,上、下兩層混凝土問有明顯的顏色差異,一些嚴重的地方有蜂窩、麻面。個月,超出保質期應復檢合格后方可使用 。
★灌漿料的特點
(1) 高韌性 可化解由動設備傳遞來的可能使水泥基灌漿層爆裂的動荷載。(2) 灌漿料的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替、振動受壓的惡劣物理工況下長期使用無塑性變形。
(4) 無收縮 確保灌漿層最終成型后與承載面完全接觸,保證設備安裝的高精確度。
(5) 灌漿料的高強早強 具有優于水泥基材料的抗壓、粘結等力學性能,更高的早期強度。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西景德鎮C60灌漿料供貨商|南昌灌漿料生產廠家。