|
|
★灌漿料的特點
抗油滲 “減”就是從材料選擇、設計、施工等方面采取措施,盡量減小混凝土結構中可能發生的體積變形,具體來說包括以下幾個方面:從配合比、摻合料與外加劑選用等各方面,減小混凝土結構中可能發生的干燥收縮、自收縮與水化熱溫度收縮。加強養護保溫減小早期混凝土的內外溫差與降溫速率。摻入膨脹劑、減縮劑以減少或補償混凝土的收縮量。選擇熱膨脹系數小的骨料,減小混凝土的線脹系數“抗”就是從材料選擇、設計、施工等方面采取措施盡量提高混凝土本身的抗裂能力。在機油中浸泡30天后其強度提高10%以上,成型體、密實、抗滲、適應機座油污環保。
微膨脹 澆注體長期使用無收縮,保證設備與基礎緊密接觸,基礎與基礎之間無收縮,并適當的膨脹壓應力確保設備長期安全運行。
耐侯性好-40℃~600℃長期安全使用
早強高強 澆后1-3天強度高達30Mpa以上,縮短工期。
的耐久性200萬次疲勞試驗,50<鐵鹽的水解作用導致pH值愈益下降;另一方面孔內正電荷過剩而形成電場,使Cl借電泳作用通過孔口和腐蝕產物(蓋子)的孔隙不斷擴散進來,導致Cl在孔內的富集。這種隨著局部腐蝕過程的進行,使閉塞區(腐蝕孔內)愈益酸化的過程叫做“自催化的酸化過程”,自催化的酸化過程加速了腐蝕孔的發展擴大。/SPAN>次凍融環境試驗強度無明顯變化。
低堿耐蝕 嚴格控制原材料堿含量,適用于堿-集料反應有抑制要求的工程。
自流態 現場只需加水攪拌,直接灌入設備基礎,砂漿自流,施工免振,確保無振動、長距離的灌漿施工。
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6由于本次試驗投有做未加固梁的對比試驗,無法比較與未加固梁製縫的情況。從以往眾多試驗結構可以得到較統一的結論:經碳纖維布加固后的梁,由于碳纖維布參與承受荷載,井且對混凝土梁有一定的約束作用,相對于未加固的梁而言,裂縫出現較晩一些,開製荷載略有增加,發展較為緩慢。製錨數量多而且密集,寬度遠遠小于末加固的梁。從製鑓的形態及發展來看,采用碳重手維對製鑓的開展有明顯的約束作用。 直尺(量程500疲勞性能方面試驗研究較少,疲勞破壞機理研究不透徹。相對于碳纖維加固與預應力碳纖維加固靜載性能研究,對預應力碳纖維加固的疲勞性能展開的試驗研究相當少,可用于分析疲勞破壞機理的數據不足,對機理研究存在分歧。目前關于預應力碳纖維加固構件的疲勞性能分為兩種觀點,一種觀點以Barnes等人為代表,認為加固構件的疲勞性能完全由主受力鋼筋控制,當受力鋼筋應力幅一致時,加固構件與未加固構件的疲勞壽命相當。外包鋼加固法也是一種使用面較廣的傳統加固方法,分濕式與干式兩種情況。兩者相比,干式外包鋼施工更為簡便,但承載力提高量、整體工作性能及受力特點也不如濕式外包鋼有效。濕式外包鋼加固施工較為復雜。將濕式外包鋼加固技術與粘鋼加固技術結合起來,用新型結構膠代替乳膠水泥和環氧樹脂化學灌漿,這可給施工帶來較大方便,且型鋼能與原混凝土結構共同受力,同時發揮了外包鋼加固技術與粘鋼加固技術的優點。 mm)
2.2.7 攪拌鍋及攪拌鏟<在壓漿之前要先檢查壓漿管內是否有氣體,將壓漿管放入漿箱內壓漿,看壓力表是否穩定,出漿管是否流暢,然后再將壓漿管接入進漿閥門。壓漿過程抽壓機同時啟動,抽壓力表的控制是壓漿的關鍵,壓力表一般控制在0.5MP左右,如果低于0.5MP說明管內有氣體,再有可能就是箱體內的入漿管放在了箱體低部,造成管口堵塞,建議箱體高于壓漿機,可以減少漏氣現象,如果不是這原因則按照前面方法排出氣體,如果大于0.5MP則說明管內不暢通,先檢查閥門是否打開,如果打開,再檢查入漿管閥門處是否堵塞,還不是只能對管道從新清理。抽氣表壓力控制在0.06MP-0.08MP之間,抽力太大致使漿體流入太快,造成端頭不密實,抽力太小影響壓漿速度,漿體流出管道時注意要滿管流出以免留有氣體.然后關閉出漿口。/SPAN>
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上針對u型與X型箍錨固的實驗梁,不同層數的梁表現出不同的碳壞形式。粘貼一層布時,u型與x型箍的梁都發生了縱向碳好維拉斷的碳壞。但就自上世紀六十年代以來,鋼筋混凝土結構迅速發展。鋼筋混凝土建筑物經受強烈地震作用后,往往會出現不同形式的破壞,引起各國的高度重視。專家學者進行了大量的試驗研究和分析,并提出了鋼筋混凝土框架結構的抗震設計理論與計算方法。實驗整體現象來i井:還是有所區別的·U型推的梁從發現剝高到最后拉斷,剝離是不斷地發展的,最后的碳壞承載力為8自生收縮是混凝土在硬化過程中,水泥與水發生水化反應,這種收縮與外界濕度無關,且可以是正的(即收縮,如普通硅酸鹽水泥混凝土),也可以是負的(即膨脹,如礦渣水泥混凝土與粉煤灰水水泥砼裂縫成因很多,但可以主要歸納為以下幾點:水泥砼材料及配合比。配合比設計不當直接影響水泥砼的抗拉強度,是造成水泥砼開裂不可忽視的原因。配合比不當指水泥用量過大,水灰比大,含砂率不適當,骨料種類不佳,選用外加劑不當等,這幾個因素是互相關聯的。有關試驗資料顯示:用水量不變時,水泥用量每增加10%,混凝土收縮增加5%;水泥用量不變時,用水量每增加10%,混凝土強度降低20%,混凝土與鋼筋的粘結力降低10%。養護條件。養護是使水泥砼正常硬化的重要手段。養護條件對裂縫的出現有著關鍵的影響。在標準養護條件下,水泥砼硬化正常,不會開裂,但只適用于試塊或是工廠的預制件生產,現場施工中不可能擁有這種條件。但是必須注意到,現場水泥砼養護越接近標準條件,水泥砼開裂可能性就越小。泥混凝土)。碳化收縮。大氣中的二氧化碳與水泥的水化物發生化學反應引起的收縮變形。碳化收縮只有在濕度50%左右才能發生,且隨二氧化碳的濃度的增加而加快。碳化收縮一般不做計算。混凝土收縮裂縫的特點是大部分屬表面裂縫,裂縫寬度較細,且縱橫交錯,成龜裂狀,形狀沒有任何規律。0kN,x型箍的梁當發現純彎段有剝高述象后直至最后拉斷,部投有發現剝萬有進一步發展的跡象,最后是突然將全級向碳纖維整條拉斷,碳壞承裁力為92kN。可見X型箍與U型箍相比,對剝離的限制作用是更為明顯的。,調整水平。
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。<無機類植筋粘結劑,為充分發揮植筋鋼筋強度,使極限荷載超過鋼筋屈服荷載,通過一系列試驗及理論分析,建議植筋深度>_15d,即合理的植筋長度。o:p>
2.4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160隨著我國國民經濟的迅猛發展,建設規模日趨宏大,大面積混凝土也越來越廣泛的被用在公共建筑、商業中心和高層、超高層民用建筑等結構的主要受力部位以及工業建筑中的大型設備基礎中。由于建筑物與結構的整體性要求,此類建筑物一般采用預應力框架結構,并且大多不設伸縮縫或伸縮縫間隔不超過規范要求(GBJl0.2001規定,室內或土中的現澆鋼筋混凝土框架結構的最大不設縫長度是55柚,這就對建筑物的無縫施工提出了要求。如果不采取相.應有效的設計和施工措施,采用合理的材料,其混凝土樓面或屋面將出現大面積的開裂,影響建筑物的正常使用。 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。<大體積混凝土由于溫度變化而產生的裂縫稱為溫度裂縫。事實上,關于溫度裂縫問題,在水工大體積混凝土結構方面的研究很多,但在土木工程方面的研究很少,而且兩者的結構并不完全相同。因此,應當針對土木.工程大體積混凝體外預應力體系。與體內預應力鋼筋不同,體外預應力鋼筋直接暴露于環境中,且預應力鋼筋又是腐蝕敏感材料,如果防護不當,就容易發生腐蝕破壞,因此體外預應力鋼筋的防腐極其重要。目前,體外預應力鋼筋的防腐方法大體上可以分為:預應力鋼筋表面涂層。常用的涂層有鍍鋅和環氧樹脂等。鍍鋅涂層兼有犧牲陽極的陰極保護作用。這種方法簡單且價格較便宜,預應力鋼筋大面積混凝土的開裂主要由變形變化引起,即收縮變形和溫度變形,當變形受到約束時引起應力,而且應力與結構的剛度有關,大面積混凝土的收縮、徐變、溫差、彈性模量以及抗拉強度都是時間的函數,當拉應力達到那一時刻混凝土的抗拉強度時,混凝網土就發生開裂。的更換及內力調整比較方便。但是這種方法的缺點也比較多:鍍鋅鋼絞線一般采用熱鍍鋅層技術,高溫會造成預應力鋼筋強度降低;由于鍍鋅的犧牲陽極作用可能產生氫,從而引起氫脆。因此實際工程中環氧樹脂涂層預應力鋼筋應用較為普遍。土自身的特點,對其溫度及溫度應力的變化規律、溫度裂縫的控制技術等方面展開一系列的研究,推動當前大體積混凝土施工技術的進步,保證工程質量,具有極大的采用了以試驗研究數據和工程經驗為依據,以分項系數為表達形式的極限狀態設計方法。(fbd 由試驗得到,為劈裂破壞和粘結破壞的最小值)。現實意義。/SPAN>
2.4.3.2 將拌和好的GM型灌漿料一次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n天的高度讀數(mm);Ho:試件的初始讀數(mm<使用粘貼附加物加固混凝土構件時,雖然混凝土表面的拉應力遠超過其抗拉強度,由于受附加物的約束限制,混凝土開縫可能得到明顯改善。盡管說粘貼的附加物對截面的應力狀況提高不大,但能改善構件截面上的極限承載能力。/SPAN>);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值,精確到10-2。
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼碳纖維布發生剝剝高至達到最大承載力這個階段的長短視錨固量的大小和錨固的長度不同而不同。從主製鑓處開始后。將發生應力重分布。與已發生剝離製_鑓相鄰的次製鑓處應力集中程度很快提高。隨著荷載的增加。當次製縫處粘結界面的應力強度因子達到材料的斷製韌性時。剝離發展到該次裂縫處剝高就這樣逐漸發展,達到錨固的邊緣時,錨固的作用開始發揮。如果粘結長度較長,這個階段就較長,如果粘結長度較短,則這個階段就較短。管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料。 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二對于受彎構件其正截面裂縫寬度達。0.2mm左右的構件,不卸荷枯鋼同樣可達到提高構件的正截面承載力的目的。對于原受力筋的極限拉應變可20世紀80年代以前,我國常用的混凝土等級相當于C8~C18,到了80年代,工程中應用的混凝土強度等級一般為C20~C30,超過C50的很少,多出現肥梁、胖柱、厚墻、深基礎、重屋蓋等情況。20世紀90年代以來,工程中應用的混凝土強度等級有了較大的提高,目前C30以上的混凝土使用已很普遍,CA0~C50的混凝土已無困難,C60甚至C80及更高的高強度等級混凝土也已開始使用。達0.01的構件,其正截面承載力計算可采用《混凝土結構加固技術規范cEC5}:90附錄1的計算方法。次灌漿。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和池電位分布圖(half--cellpotentialmapping)D5]來消除這些影響,從而更好地把測量的電位和鋼筋的腐蝕活性關聯起來,進而可更好地區分鋼筋在混凝土中不同的腐蝕區域,對鋼筋的腐蝕狀況進行評價。極化電阻測量(polarizationresistancemeasurements)經常應于混凝土中鋼筋腐蝕速度的定量檢測。但在混凝土結構中,應用這種技術的主要困難在于腐蝕反應在鋼筋表面的不均勻分布以及實際混凝土結構中鋼筋的實際表面積無法確定等。為了克服極化電阻法的這些缺點,人們又發展了保護環技術(guardringtechnique)Dg,201,以控制極化電流在指定的鋼筋表面均勻分布。地坪的補強加固(修補厚度≥40mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度301994年,前蘇聯學者對結構的可靠度研究展開了豐富的工作,明確了結構荷載及抗力的分布統計方法,針對結構可靠度受到檢測手段以及計算方法的影響,提出了時間這一影響因素。國內的可靠度研究始于二十世紀七十年代,1976年,原國家建委下達了“建筑結構安全度及荷載組合"研究課題,1979年又下達了編制《建筑結構設計統一標準》的任務,國內相關科研機構、設計院和高等院校等單位展開了大量的調查研究,對既有的建筑結}構的荷載、材料性能、構件可靠度計算、設計計算公式等進行了統計分析和試驗驗證,并在1984年完成了《建筑結構設計統一標準》(GBJ68.84)的編制工作。mm<δ<2當混凝土由受拉轉為受壓的應力狀態時,程序認為混凝土張開裂縫會重新閉合,并且閉合裂縫能夠完全承受垂直于薄弱面方向傳遞過來的壓應力,相應地裂縫傳遞剪力的能力也提高,由混凝土閉合裂縫的傳遞系數尾來反映混凝土的閉合裂縫間剪力傳遞能力。00mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達C20不要將混合剩余膠體放回罐內,如要加快或減慢云石膠固化速度,適當增加或減少固化劑即可。請謹記將膠置于陰涼處,選擇混凝土原材料,優化混凝土配合比的目的是使混凝土具有較強的抗裂能力,具體說,就是要求混凝土的絕熱溫升較小、抗拉強度較大、極限拉伸變形能力較大、熱量比較小、線膨脹系數較小,自生體積變形最好是微膨,至少是低收縮。用后請合緊灌蓋,此膠只為快速定位及填補石孔和裂縫研制,若需粘接,建議使用優質AB干掛膠。待粘接表面應清潔和干燥,相反則會造成粘接不牢或脫落。,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需早在1953年,瑞士大學R.H.EWNS教授就提出了相關灌漿質量中存在的問題,通過預應力混凝土梁的破壞性試驗,他發現,梁的裂縫中有水流出,經過分析,這主要是由于漿體泌水積聚在漿體內部空隙中,當梁在破壞性試驗中,他最早提出改正漿體材料和灌漿工藝的一些相關問題。要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
★灌漿料的施工
1.基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式<質量控制程序:模擬試驗3d后,承包商應對孔道壓漿進行開槽或取芯檢查,暴露孔道的縱、橫斷面、錨具及其它由監理指定的位置,確定孔道壓漿是否滿意,并提交試驗細節、結果及暴露面照片的報告。孔道壓漿的飽滿度以孔道直徑計不小于95%(扁錨直徑以近似值計),孔道壓漿中的孔隙位置、孔道密封性、鋼束狀況均應反映在報告中。在監理對壓漿程序批準前不得進行結構的預應力施工。/SPAN>
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整"植筋加固"技術是一項針對混凝土結構較簡捷、有效的連接與錨固技術;可植入普通鋼筋,目前,補償收縮混凝土的研究和發展逐漸認識到,如果有意識地控制和利用混凝土的自生體積膨脹變形,有可能大大改善某些混凝土的抗裂性。但對于普通水泥混凝土,由于大部分屬于收縮的自生體積變形,數量級較小,一般在計算中可忽略不計。也可植入螺栓式錨筋;現已廣泛應用于建筑物的加固改造工程。個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
3. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
4. 灌漿料的攪拌
按產品合格證上推薦的水料比確定加水量,拌和用水應采用飲用水,水溫以5~40℃為宜,可采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
2).灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
3).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
4).每次灌漿層厚度不宜超過100mm。
5).較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
6).灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
7)對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
8).設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
9).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
10)模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
11)灌漿中如出現跑漿現象,應及時處理。
12)當設備基礎灌漿量較大時,應采用機械攪拌方式,以保證灌漿施工。
6、養護
1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的應用范圍
(1)需高精度安裝的設備設備基礎的一次灌漿和二次灌漿。
(2)鋼筋栽埋及建筑、巖土工程的錨桿錨固。
(3)建筑加固改造工程,梁柱接頭、變形縫、施工縫澆筑。
(4)道路、橋梁、隧道、機場等工程搶修施工使用。
(5) 鐵路軌枕的錨固施工。
(6) 柱濕包鋼加固用于灌注角鋼和柱間隙縫。
★參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。景德鎮高強無收縮灌漿料供應商|南昌灌漿料。