6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
2. 確定灌漿方式<
干燥收縮是由于存在于水泥凝膠中的水分而發生的毛細管張力造成混凝土的收縮,即混凝土中存在極細的孔隙(毛細管),水從中逸出,在這些毛細孔中產生毛細另據1995年前蘇聯有關資料統計,其工業建筑腐蝕造成的損失每年達固定資產的16%,到1998年,世界上鋼筋混凝土腐蝕破壞的修復費一年要2500億美元。我國在1960年,由于要求防凍而在混凝上中摻用過量氯鹽,導致混凝土順筋開裂、剝落,造成的構件破壞事例屢有發生。管張力使混凝土產生變形,造成干燥Z收縮。總之水泥石或混凝土的干燥過程是其所含水轉化為蒸汽蒸發過程,水泥.石內的可蒸發水存在于大孔洞、毛細孔及凝膠孔中,在干燥過程中,首先是大孔洞里的水蒸發,但不至于引起收縮,隨后是毛細孔水蒸發,由較粗孔到較細孔再到更細孔,脫水量依次減少而收縮量依次增大。干燥收縮最大值是發生在混凝土第一次干燥后,應變最大曾經觀測到約為4.Oxl04。/div>
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"因此電化學檢測方法得到了很大的重視和發展,目前在實驗室已成功地用于檢測混凝土試樣中鋼筋的銹蝕狀況和瞬時銹蝕速度,并已開始嘗試用于現場檢測。電化學方法是混凝土中鋼筋銹蝕無損檢測方法的發展方向。目前鋼筋銹蝕檢測的電化學方法主要有自然電位法、交流阻抗譜法和線性極化法等,此外恒電量法、電化噪聲法、混凝土電阻法、諧波法等也在發展中,但用于現場檢測尚不多。壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
★灌漿料的安全性
采用無毒無揮發配方,對環境和人體友好,但應避免與皮膚長期接觸,使用時應佩帶水泥是大面積混凝土結構物的主要建筑材料。各種不同品種水泥的區別主要是水泥熟料礦物組成不同,或摻合料的種類與摻量不同。不同品種的水泥或同一品種不同類型的水泥在強度、放熱量等性質上可能會有很大的差別,有時同一品種不同類在影響單筋巨形截面碳纖維應變發展的諸因素中,截面的縱筋配筋特征值的影響最顯著。通過無量細數值分析知,當板的配筋特征值不超過o.2且加固系數不超過l.2,梁的配筋特征值不超過0.l5且加固系數不超過l.4時,承載能力極限狀態下碳纖維片材的拉應變均能超過或接近允許拉應變,當梁的配筋特征值超過o.15,板的配筋特征值超過o.2時,碳纖維片材均不能達到允許拉應變,加固效果顯著降低。型的水泥之間差別甚至會超過不同品種之間的差別。因此,水泥的選擇對大面積混凝土工程是十分重要的。必要防護并保持環境通風,皮膚沾染應及時清洗,如隨著施工技術水平的不斷提高,節段預制拼裝技術逐漸得到廣泛的應用,由于節段間拼接縫的影響,使得預應力孔道壓漿質量更難保證,因此對預應力孔道中注漿密實度的檢測也隨之變得尤為重要。文中采用地質雷達對注漿密實性進行檢測,表明該技術具有無損、速度快、精度高、成本低等優點,可以廣泛推廣和應用。有誤食口服,。
★灌漿料的適用范圍與參數
CGM-3
超細加固型 超細骨料,適用于灌漿層厚度5mm<δ<30mm的設備基礎及鋼結構柱腳板二次灌漿。混凝土梁柱加固角鋼與混凝土之間縫隙灌漿。
CGM-2
豆石加固型 含5~10mm大骨料,適用于灌漿層厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥60mm)。
CGM-4
超早強加固型 2小時強度達到15Mpa,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,止水由于混凝土材料通常呈弱堿性或堿性,故其對酸性環境比較敏感。已有研究和實際工程表明,酸類腐蝕將造成混凝土性能急劇劣化,同時加快鋼筋的銹蝕速度,因而成了腐蝕混凝土結構的重要因素。調查發現,我國內陸地區、沿海地區的許多橋梁、隧道、大壩、廠房等工程均出現了不同程度的酸侵蝕,甚至危及工程的安全運行。因此,通過加速試驗研究混凝土材料在酸性環境中的長期物理力學性能和損傷規律,對于評價混凝土構件在酸性或弱酸性環境中服役期間的力學性能,預測其壽命是具有重要的意義的。堵漏快速修補。
CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼筋,建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參考。
2.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
3.灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
★灌漿料的特點
(1) 高韌性 眾多研究表明,鋼筋銹蝕是引起混凝土結構耐久性劣化最主要、最直接的原因。鋼筋銹蝕的嚴重后果有三方面,一是鋼筋銹蝕引起鋼筋截面減小和強度降低;二是鋼筋銹蝕產物產生體積膨脹(約2~4倍),導致混凝土在80年代對大面積混凝土的性能和溫度進行了分析,配合工程實例討論了溫度應力的計算,從原材料預冷卻、混凝土養護時溫度控制、混凝土測溫技術和設計施工中防止裂縫的技術等方面提出了大面積混凝土的裂縫控制措施。保護層沿筋開裂甚至脫落,從而使混凝土截面產生損傷;三是鋼筋銹蝕使鋼筋與混凝土之間的粘結性能退化,影響鋼筋混凝土結構的整體受力,甚至導致結構的破壞。<結構設計根據使用用途和各種荷載作用,提出混凝土結構的混凝土強度等級。由于超高層結構承受較大粘貼鋼板后結構的抗彎強度的確定是粘鋼技術的最基本的計算之一。粘鋼后結構計算時仍然可采用平截面 假設,已有大量實驗證明平截面假設 在粘鋼結構中依然成立。因此,粘鋼結構抗彎強度計算是把粘貼的鋼板當作外加鋼筋進行計算。的垂直荷載和地震作用,下部承重柱往往要采用較高的強度等級,但應僅限于柱子強度,而樓板、梁及地下室外墻,尤其是基礎底板大體積混凝土絕對不應跟柱子選擇相同的強度等級,應當根據具體荷載條件盡可能選擇中低強度等級,一般為C20.C30,最高不超過R60C35是較合理的地下室大體積混凝土強度等級。混凝土的設計強度一般為28d齡期強度R28,但很多試驗資料表明,混凝土在28d后強度仍有不同程度的增長。由于一般基礎大體積混凝土結構所承受的設計荷載要經過較長時間以后才逐步施加其上,因此只要經過充分的論證,我們可以利用混凝土的后期強度R45、R60或R90作為混凝土的設計強度。這樣,單位體積混凝土的水泥用量就可以減少40~70kg/m3,水化熱減少可觀,同時為保證結構混凝土的強度滿足使用要求,這種后期強度的利用應經設計單位同意。/STRONG>可化解由動設備傳遞來的可能使水泥基灌漿層爆裂的動荷載。(2) 灌漿料的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替、振動受壓的惡劣物理工況下長期使用無塑性變形。
(4) 無收縮 確保灌漿層最終成型后與承載面完全接觸。
(5) 灌漿料的高強早強 具有優于水泥基材料的抗壓、粘結等力學性能,更高的早期強度。
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500混凝土構件剩余承載力的計算是耐久性評估的一項重要內容,但要較為準確計算鋼筋混凝土構件的剩余承載力,按粘鋼梁的初始裂紋出現較晚而且發展緩慢,裂紋較細密均勻,開裂荷載提高較多。與同面積底面粘鋼梁相比,側面粘鋼梁的底面裂縫出現較早,側面裂縫出現較晚,裂縫發展較慢但最終裂縫寬度較大,而底面粘鋼梁的裂縫主要出現在梁側面,但向上發展較快,最終裂縫寬度較小。對于粘鋼面積相同的梁,鋼板寬厚比值越大,鋼板越薄,則梁的裂縫越細密,開裂荷載也現澆泥凝土樓板截面小,與外界環境的接觸面大,容易岡溫度、收縮、不均勻沉降而開裂。按導致結構開裂的主要因素與出現時問的先后.樓板上可睢會出現以下種類的裂縫;塑性沉降裂縫;表面溫度收縮裂縫;貫穿性溫度、干燥收縮裂縫;表面干燥收縮裂縫:貫穿性干燥收縮裂縫。在不同的結構中對樓板變形有約束作用的構件可能是剪力墻、梁、柱或它們的各種組合.在不同的約束形式作用下,裂縫的形態與走向又有許多差別。更高,表明粘鋼加固的鋼板不宜太厚,寬厚比值不宜太小。規范中給定的常規計算方法往往是不夠的。這是因為鋼筋混凝土構件在鋼筋銹蝕后的各種非線性行為十分明顯,尤其是鋼筋與混凝土之間的粘結行為。此時借助有限元分析是十分有效的,而有限元分析結果的準確程度與本構關系的合理性有很大的關系,包括銹蝕鋼筋的力學本構關系和銹蝕后的粘結-滑移本構關系。 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
2.4.2 抗壓強度(對相同海洋環境下齡期為5年、7年和9年的銹蝕鋼筋混凝土板的各項指標進行對比分析,以探討隨著構件齡期的增大,鋼筋混凝土板各項性能隨時間退化的規律;利用退化規律預測銹蝕鋼筋混凝土板損傷及承載力發展趨勢。參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌
加入阻銹劑MCI—A、Sika901及亞硝酸鈣后。混凝土試件的抗凍性能略有提高,這主要是因為雖然阻銹劑在一定程度上增加了混凝土的密實度,但又由于遷移型阻銹劑有一定的親水性.沒有本質上改變混凝土的吸水率。遷移型阻銹劑提高混凝土抗凍性能的幅度要大于亞硝酸鈣。漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。<
由于地鐵環境相對封閉,人流密集,地鐵工程鋼筋混凝土碳化腐蝕環境較為嚴酷,因此有必要對地鐵工程混凝土材料與鋼筋混凝土結構抗碳化耐久壽命進行研究。另外,由于北方地區使用化冰鹽有增無減,地鐵襯砌結構的外部與土壤直接接觸,因此,對氯離子侵蝕作用下的鋼筋銹蝕進行研究是十分必要的。/div>
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.混凝土本身可提對于大面積混凝土應優先選用粉煤灰、高效(緩凝)減水劑與膨脹劑,其摻量應通過試驗確龍定。當混凝土中摻入粉煤灰時,其質量應符合現行國家標準《用于水泥和混凝土中的粉煤灰》的規定,其應用應符合建設部標準《粉煤灰在混凝土和砂漿中應筑用技術規程》的規定。應特別注意外加劑對收縮的影響。任何新外加劑、不經工程試點取得成熟資料,不應大面積推廣。供合適的保護防止鋼筋生銹,這種保護包括物理上的和化學上的。在完全水化的水泥中,氫氧化鈣約占20%,氫氧化鈣在硬化水泥漿體中結晶,或者在其空隙中以飽和水溶液的形式存在。所以新鮮的混凝土呈堿性。混凝土中高pH值環境可導致在鋼筋表面自然形成一層氧化膜,即為人們熟知的鈍化膜。只要這層膜穩定,鋼筋就可具有防銹的能力。4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
2.鉆孔不應設置于構件的保護層或裝飾層內。4.3.2 將拌和好的GM型灌漿料一次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n天的高度讀數(mm);Ho:試件的初始讀數(mm);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值.
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm70年代以來,為適應我國公路橋梁養護與技術改造要求,我國各省公路管養部門就陸續開展了橋梁加固技術的試驗研究和工程實踐嘗試。近二三十年來,國內出現了許多橋梁結構加固工程實例,在橋梁加固技術改造方面,特別是混凝土結構的加固補強方面,積累了豐富的實踐經驗,取得了豐碩成果。中國工程建設標準協會1991年制訂頒布了“混凝土結構加固技術規范”。目前,交通部公路司組織一些省市公路局、交通部公路科學研究所等單位正在編制的“公路混凝土橋梁加固技術規程”,用于規范指導公路混凝土橋梁的加固工作。鋼管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西高安高強無收縮灌漿料供應商|南昌灌漿料廠家直銷。